Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
cover
Shannisya Noorcintanami
"

Posisi Indonesia sebagai salah satu negara yang masuk ke dalam kategori High Burden Countries untuk penyakit menular Tuberkulosis (TB), menyebabkan TB menjadi masalah kesehatan yang patut diperhatikan oleh Pemerintah. Maka, penting bagi Pemerintah untuk mengidentifikasi faktor-faktor yang mempengaruhi jumlah kasus TB. Pada umumnya, model regresi linear berganda digunakan untuk melihat bagaimana hubungan linear antara faktor-faktor tersebut dengan jumlah kasus TB, namun dengan model ini variasi spasial pada data tidak diperhitungkan. Untuk menutupi kekurangan tersebut, penelitian ini menggunakan model spasial, yaitu model yang memperhitungkan lokasi geografis observasi dalam pembentukan model. Penelitian ini mencakup dua jenis Geographically Weighted Models (GWM), yaitu Geographically Weighted Regression (GWR) dan Mixed Geographically Weighted Regression (MGWR). Jenis model spasial ini akan memberikan bobot tertentu pada observasi-observasi sesuai dengan lokasi geografisnya. Kedua model tersebut dikonstruksi untuk melihat hubungan antara jumlah kasus baru TB dengan faktor-faktor yang diduga mempengaruhinya per Kabupaten/Kota di Pulau Jawa tahun 2017. Faktor-faktor tersebut adalah jumlah penduduk, angka keberhasilan pengobatan TB, persentase balita yang diimunisasi BCG, persentase penderita HIV, persentase rumah sehat, persentase penduduk miskin dan jumlah puskesmas per seratus ribu penduduk. Perbandingan performa kedua model diukur menggunakan Akaike’s Information Criterion (AIC) dan Adjusted R2 untuk menentukan model yang relatif lebih baik. Dari penelitian ini, ditemukan bahwa GWR merupakan model yang relatif lebih baik untuk data. Salah satu penemuan pada penelitian ini adalah bahwa hubungan antara persentase balita yang diimunisasi BCG dan jumlah kasus baru TB adalah negatif dan paling kuat di DKI Jakarta. Hal ini dapat disebabkan oleh tingginya tingkat kesadaran dari pentingnya imunisasi BCG dan sosialisasinya di lokasi tersebut.

 


Indonesia’s position as one of the High Burden Countries for the infectious disease, Tuberculosis (TB), has caused TB to be a major health problem in Indonesia. As means to control the number of TB cases, it becomes important for the government to identify the factors affecting it. Commonly, multiple linear regression models are used to evaluate the linear relationship between the factors and the number of TB cases.  Unfortunately, this model does not have the ability to expose the spatial variation in the data. To improve that, this research uses a spatial model: a model that takes the geographical location into account in the making of the model. This research covers two types of Geographically Weighted Models (GWM), which are Geographically Weighted Regression (GWR) and Mixed Geographically Weighted Regression (MGWR). These spatial models assign weights to the observations based on its’ geographical location. These two models will be constructed to evaluate the relationship between the number of TB cases and the factors affecting it per Regency/City in Java in 2017, namely: population, success rate of TB treatment, percentage of toddlers receiving BCG vaccine, percentage of HIV patient, percentage of healthy homes, percentage of poor people and the number of public health centre per one hundred thousand people. The performance of both models is measured using Akaike’s Information Criterion (AIC) and Adjusted R2 to find out which model is relatively better. The result of this research suggests that the GWR model is the relatively better model for the data. The model suggests that the relationship between percentage of toddlers receiving BCG vaccine and the number of TB cases is negative and is the strongest in Jakarta, which may be caused by the level of awareness and socialization of BCG vaccine that is better in this area.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marisa Rayhani
"Kematian akibat tuberkulosis TB secara global sebanyak lebih dari 95 terjadi pada negara berpenghasilan rendah dan menengah. Indonesia ikut menyumbang 60 dari keseluruhan kasus TB global WHO, 2015. Provinsi DKI Jakarta dan Provinsi Banten termasuk ke dalam lima provinsi dengan estimasi prevalensi TB tertinggi di Indonesia Riskesdas, 2007 dan 2013. Perlu dibuat model yang mempertimbangkan kondisi lokal spesifik dengan memperhatikan perbedaan lokasi dari aspek geografis, kependudukan, dan kondisi sosial Eryando, 2007 dan Rahmaniati, 2015.
Penelitian ini adalah penelitian kuantitatif analitik dengan desain potong lintang. Kajian faktor risiko kejadian TB sesuai konsep Model Perilaku Kesehatan oleh Green 1980 dan Kerangka Kerja Faktor Risiko TB oleh WHO 2010 dengan metode Geographically Weighted Regression GWR pada 13 kabupaten/kota di Provinsi DKI Jakarta dan Provinsi Banten.
Hasil penelitian memperlihatkan tiga kelompok faktor risiko dapat menjelaskan kontribusi parameter dalam pemodelan kejadian TB di kedua provinsi sebesar 6. Model GWR mampu menggambarkan variasi tiga kelompok faktor risiko kejadian TB di kedua provinsi sebesar 96. Estimasi rata-rata proporsi kejadian TB akan meningkat pada risiko pendidikan rendah, bekerja, dan tersedianya fasilitas kesehatan TB.
Status pendidikan menjadi parameter yang bernilai signifikan pada setiap kabupaten/kota. Setiap kabupaten/kota menghasilkan nilai estimasi berbeda yang menunjukkan besaran koefisien kejadian TB yang dipengaruhi oleh setiap perubahan parameternya. Setiap kabupaten/kota di kedua provinsi melalui Dinas Kesehatan perlu menerapkan kebijakan dan intervensi dengan pertimbangan nilai estimasi parameter pada faktor risiko sesuai pemodelan GWR, terutama peningkatan pendidikan dan promosi kesehatan TB.

Deaths from tuberculosis TB globally by more than 95 occur in low and middle income countries. Indonesia contributes 60 of all global TB cases WHO, 2015. DKI Jakarta Provinces and Banten Provinces are included in the five provinces with the highest estimated prevalence of TB in Indonesia Riskesdas, 2007 and 2013. Its need some model to consider the specific local conditions, which is geographical, demographic, and social aspects for appropriate health system improvement by region Eryando, 2007 and Rahmaniati, 2015.
This research is an analytic quantitative research with cross sectional design. Assessment of risk factors for TB incidence according to the Health Behavior Model by Green 1980 and TB Risk Factors Framework by WHO 2010 using Geographically Weighted Regression GWR method in 13 districts cities in DKI Jakarta Province and Banten Province.
The results showed three groups of risk factors could explain the contribution of parameters in modeling TB incidence in both provinces by 6. The GWR model was able to describe the variation of three groups of TB risk factors in both provinces by 96. The average estimate of the proportion of TB incidence will increase in the risk of low education, work, and the availability of TB health facilities.
Educational status becomes a significant parameter in every district city. Each district city produces a different estimation value indicating the magnitude of TB incidence coefficients that is affected by each parameter change. Each district city in both provinces through the Department of Health needs to implement policies and interventions with consideration of parameter estimation values on risk factors according to GWR modeling, especially improving TB education and promotion.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2017
T48455
UI - Tesis Membership  Universitas Indonesia Library
cover
Taruga Runadi
"Menganalisis hubungan antara jumlah tindak kejahatan dan faktor-faktor yang mempengaruhinya menjadi topik penelitian yang menarik karena jumlah tindak kejahatan di Indonesia dalam sepuluh tahun terakhir cenderung meningkat. Untuk meningkatkan kualitas keamanan masyarakat maka pemerintah perlu memahami faktor-faktor apa saja yang dapat memicu tindakan kejahatan. Dibandingkan dengan metode analisis regresi klasik, metode Geographically Weighted Regression GWR lebih diunggulkan karena dapat menangani masalah ketidak stasioneran spasial yang biasanya terjadi pada data fenomena-fenomena sosial. Ketidakstasioneran spasial adalah situasi dimana hubungan antar peubah berbeda-beda secara signifikan disetiap lokasi observasi. Hal tersebut mengakibatkan hasil analisis regresi klasik menjadi tidak akurat di beberapa lokasi. GWR menangani masalah tersebut dengan membangun model regresi di setiap titik observasi sehingga memungkinkan parameter regresi menjadi berbeda di setiap lokasi observasi. Penelitian ini menggunakan jumlah tindak kejahatan y sebagai peubah terikat dan peubah bebasnya adalah jumlah penduduk buta huruf x1, jumlah pengangguran x2, jumlah penduduk miskin x3, kepadatan penduduk x4, dan jumlah korban NAPZA x5. Penelitian ini menggunakan data sekunder yang dihimpun oleh POLRI, BPS, dan Dinsos di Jawa Tengah pada tahun 2015. Terdapat dua fungsi pembobot spasial GWR yang akan dibandingkan yaitu Kernel Gaussian dan Kernel Bisquare. Hasil penelitian menunjukkan fungsi Kernel Gaussian lebih baik dibanding Kernel Bisquare berdasarkan skor AIC dan R2. Hasil analisis menggunakan GWR menghasilkan model untuk 35 kabupaten/kota di Jawa Tengah.

Analyzing the relationship between number of crime cases and factors defined became an interesting research topic over the last ten years. The total number of crime in Indonesia didn rsquo t show a consistent decrease. In order to upgrade people safeness quality, the government need to know the factors influence people committing crime acts. Rather than using classical regression analysis, Geographically Weighted Regression GWR was preferable since it gave a better representative model by effectively resolve spatial non stationary problem which is generally exist in spatial data of social phenomenon. Spatial non stationary is a situation when the relationship between variables are significantly different in each location of observation point, so that classic regression analysis will result a misleading interpretation in some location. GWR handled the spatial non stationary problem by generating a single model in each observation point which allow different relationship to exist at different point in space. This study used number of crime cases y as the dependent variable and the factors which affect the number of crime cases as independent variables that consist of the number of illiterates x1 , the number of unemployed x2, the number of poor population x3, population density x4, the number of victims of drug x5. This study used secondary data collected by POLRI, BPS, and Social ministry of Indonesia in Central Java during 2015. Two spatial weighting functions were compared i.e. Kernel Gaussian and Kernel Bisquare and the study result indicated that Kernel Gaussian was batter according to score of R2 and AIC. GWR generated model for 35 city regency in Central Java. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T48305
UI - Tesis Membership  Universitas Indonesia Library
cover
Ribut Nurul Tri Wahyuni
"Abstract
Pro-poor growth program has not been effective reducing poverty in Papua because the government does not have complete information about the spatial variation of poverty-causing factors (spatial heterogeneity). Therefore, this study will analyze poverty-causing factors using Geographically Weighted Regression (GWR) model. This study finds that the influence of the cultivated land area, use of technical irrigation, source of drinking water, and the electrical infrastructure vary spatially. In additions, multivariate K-means clustering
shows that subdistricts are spatially clustered by geographical conditions. These results imply that poverty alleviation interventions should be dierent for different areas.
Abstrak
Program pro-poor growth (program pembangunan ekonomi yang berpihak kepada penduduk miskin) belum efektif mengurangi kemiskinan di Papua karena pemerintah tidak memiliki informasi lengkap mengenai faktor-faktor yang menyebabkan kemiskinan menurut variasi wilayah (spatial heterogeneity). Oleh karena itu, studi ini akan menganalisis faktor-faktor tersebut dengan menggunakan model Geographically Weighted Regression (GWR). Studi ini menemukan pengaruh luas lahan yang diusahakan, penggunaan irigasi teknis, sumber air minum, dan listrik terhadap kemiskinan bervariasi secara spasial. Sementara itu, multivariate K-means clustering menunjukkan kecamatan mengelompok menurut kondisi geografis. Ini menyiratkan bahwa intervensi pengentasan kemiskinan seharusnya berbeda untuk wilayah berbeda."
2016
PDF
Artikel Jurnal  Universitas Indonesia Library
cover
Tris Eryando
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2024
PGB-pdf
UI - Pidato  Universitas Indonesia Library
cover
Carisa Putri Salsabila Purnamasari
"Pengangguran merupakan fenomena sosial yang menjadi salah satu masalah utama yang dihadapi setiap daerah di Indonesia. Salah satu cara yang dapat dilakukan untuk mengurangi angka pengangguran adalah dengan melakukan analisis terhadap faktor-faktor yang mempengaruhi tingkat pengangguran terbuka (TPT). Dibandingkan dengan metode analisis regresi linier, metode Geographically Weighted Regression (GWR) lebih diunggulkan karena dapat menangani masalah ketidakstasioneran spasial yang biasanya terjadi pada data fenomena sosial. Ketidakstasioneran spasial adalah situasi dimana hubungan antar variabel berbeda-beda secara signifikan di setiap lokasi pengamatan. Ketidakstasioneran spasial ini sering disebut juga dengan heterogen spasial. Heterogenitas spasial mengakibatkan hasil analisis regresi linier menjadi tidak akurat di beberapa lokasi. GWR menangani masalah tersebut dengan membangun model regresi di setiap lokasi pengamatan sehingga memungkinkan parameter regresi menjadi berbeda di setiap lokasi pengamatan. Pendugaan parameter pada model GWR menggunakan pembobot berdasarkan lokasi setiap pengamatan sehingga model yang diperoleh berlaku hanya untuk lokasi tersebut. Penentuan pembobot bergantung pada nilai bandwidth. Bandwidth merupakan lingkaran dengan radius ℎ dari titik pusat lokasi pengamatan yang digunakan sebagai dasar penentuan pembobot setiap lokasi pengamatan. Nilai bandwidth yang sangat kecil akan mengakibatkan variansi yang besar. Hal tersebut disebabkan karena jika nilai bandwidth sangat kecil maka jumlah pengamatan yang berada pada radius h menjadi sedikit, sehingga menyebabkan model yang diperoleh sangat kasar (undersmoothing) karena menggunakan sedikit pengamatan, dan sebaliknya. Oleh karena itu, pemilihan bandwidth optimum sangat penting dalam menentukan pembobot karena dapat mempengaruhi ketepatan model yang terbentuk. Penelitian ini bertujuan untuk mengetahui perbandingan performa model GWR yang menggunakan metode bandwidth CV, AICc, dan BIC dalam pembentukan fungsi pembobot Fixed Gaussian Kernel yang diterapkan pada data pengangguran di kabupaten/kota di Pulau Jawa. Variabel dependen yang digunakan dalam penelitian ini adalah tingkat pengangguran terbuka kabupaten/kota di Pulau Jawa, dan variabel independen yang digunakan adalah kepadatan penduduk, indeks pembangunan manusia, tingkat partisipasi angkatan kerja, upah minimum kabupaten/kota, rata-rata upah sebulan pekerja formal, dan rata-rata pendapatan bersih sebulan pekerja informal. Hasil penelitian menunjukkan bahwa setiap kabupaten/kota memiliki model GWR yang berbeda-beda. Model GWR bandwidth CV lebih baik dalam menjelaskan data pengangguran kabupaten/kota di Pulau Jawa tahun 2020 karena memiliki nilai RMSE paling kecil, yaitu 1,0904 serta nilai R2 dan Adjusted-R2 paling besar, yaitu 0,8539011 dan 0,7937159.

Unemployment is a social phenomenon, a problem faced by every region in Indonesia. One way that can be carried out to reduce the unemployment rate is analyzing the factors that affect the open unemployment rate (TPT). Rather than using linear regression analysis, Geographically Weighted Regression (GWR) was preferable since it gave a better representative model by effectively resolve spatial non-stationary problem which is generally exist in spatial data of social phenomenon. Spatial non-stationary is a situation when the relationship between variables are significantly different in each location of observation point. This spatial non-stationary is often refer to spatial heterogeneity. Spatial heterogeneity show that linear regression analysis will give a misleading interpretation results in some locations. GWR solve this problem by generating a single model in each observation location so the regression parameters can be different at each observation location. Parameter estimation in the GWR model uses weights based on the location of each observation so that the estimate model applies only to this location. The weighting determination depends on the bandwidth value. Bandwidth is a circle with radius ℎ from the center point of the observation location which is used as the basis for determining the weight of each observation location. Smaller bandwidth value will result a large variance. It can happen because when the bandwidth is very small, there will be a small number observations in the radius h, which can makes the estimate model is very rough (undersmoothing) because it uses few observations, and vice versa. Therefore, choosing the optimum bandwidth is very important in determining the weights where it can affect the accuracy of the model formed. This study aims to compare the performance of the GWR model using the CV, AICc, and BIC bandwidth methods in the formation of Fixed Gaussian Kernel weighted function which is applied to unemployment data in districts/cities in Java. The dependent variable used in this study is the district/city open unemployment rate in Java, and the independent variables are population density, human development index, labor force participation rate, district/city minimum wage, the average monthly wage of formal workers, and the average monthly net income of informal workers. The results show that each district/city has a different GWR model. The GWR model with CV bandwidth is better at explaining district/city unemployment data on Java Island in 2020 which it has the smallest RMSE value, 1.0904, and the largest R2 and Adjusted-R2 values, namely 0.8539011 and 0.7937159, respectively."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library