Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Lathif Prasetyo
"Perkembangan pemanfaatan gas alam sebagai sumber energi semakin meningkat dengan dorongan bauran energi nasional di indonesia. Pemanfaatan proyek gas alam sebagi energi listrik di indonesia skala besar sudah dimulai dan diimplementasikan. Pengemmbangan pembangkit gas skala kecil saat ini sudah mulai disusun kajian-kajian proyek namun belum ada yang terealisasi. Faktor penting dalam pengembangan LNG skala kecil adalah transportasi laut yang layak sebagai upaya hilirisasi agar gas dapat dimanfaatkan untuk pemenuhan gas pada daerah-daerah direa timur indonesia. Penulisan ini bertujuan untuk mempertajam kajian transportasi gas alam mengunakan SLNGC dengan melakukan optimasi agar kajian yang dilakukan dapat meningkatkan kelayakan proyek SLNGC. Dengan mengambil studi kasus pengankutan gas di wilayh timur indonesia diharapkan penelitian ini mendapatkan hasil bahwa SLNGC layak untuk direalisasikan dari berbagai aspek kajian. Peneletian ini juga menjelaskan konsep desain kapal yang layak untuk digunakan seperti apa. Dari hasil kajian yang sudah diteliti mendadpatkan bahwa optimasi dapat berdampak cukup signifikan dan berkontriburi banyak dalam meningkatkan kelayakan investasi SLNGC pada studi kasus yang dikaji.
......The development of the use of natural gas as an energy source is increasing with the encouragement of the national energy mix in Indonesia. Utilization of natural gas projects as electrical energy in Indonesia on a large scale has been started and implemented. At present, the development of small-scale gas plants has begun to be compiled, but project studies have not yet been realized. An important factor in developing small-scale LNG is creating proper sea transportation as a downstream fleet so that gas can be utilized for gas fulfillment in areas in eastern Indonesia. This writing aims to sharpen the study of natural gas transportation using SLNGC by optimizing so that the studies carried out can increase the feasibility of the SLNGC project by taking a case study of gas transportation in eastern Indonesia, it is hoped that this research will get results that SLNGC is feasible to be realized from various aspects of the study. This research also explains what ship design concepts are suitable for use. From the results of the studies that have been researched, it is found that hull optimization can have a significant impact and contribute a lot in increasing the feasibility of SLNGC investments in the case studies."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Reyzando Nawara
"ABSTRAK
Penelitian ini memiliki tujuan untuk menganalisis exergy, dampak lingkungan berdasarkan exergy, dan juga mencari kondisi optimum dari sistem propulsi kapal LNG dengan siklus kombinasi turbin gas dan turbin cascade CO2 sebagai alternatif sistem propulsi yang ramah lingkungan dan memiliki performa yang baik. Analisis exergy dilakukan pada kondisi simulasi yang didapatkan dari literatur jurnal yang terbaru dengan menggunakan software EES, dihasilkan efisiensi exergy sebesar 59 dengan efisiensi thermal 43.76. Analisis exergoenvironmental dilakukan dengan menggunakan software SimaPro, didapatkan sistem propulsi pada penelitian ini memiliki faktor exergoenvironmental sebesar 38.15. Pada penelitian ini dilakukan juga optimasi agar mendapatkan kondisi optimum dari segi exergy dan lingkungan, optimasi dilakukan menggunakan metode algoritma genetika melalui software Matlab. Sepuluh parameter dijadikan variabel penentu pada optimasi ini. Didapatkan 70 altermatif solusi pareto front, yang kemudian diambil keputusan satu solusi terbaik menggunakan metode TOPSIS. Alternatif variabel yang telah dipilih mampu meningkatkan efisiensi exergy hingga mencapai 60.93 dengan efisiensi thermal sebesar 46.78, dan faktor exergoenvironmental turun hingga mencapai 29.98. Dari penelitian ditunjukkan bahwa sistem propulsi yang diajukan dapat dijadikan sebagai alternatif sistem propulsi kapal LNG karena menghasilkan performa yang cukup unggul dari segi performa exergy dan energi maupun secara lingkungan dibandingkan sistem propulsi yang sudah ada sebelumnya.

ABSTRACT
The objective of this research is to analyze the exergy, environmental impact and also to get the optimum condition of LNG carrier propulsion system using combined cycle of gas turbine and cascade CO2 turbine as an alternative for propulsion system which has good performance and eco friendly. The exergy analyzed at simulation condition based on newest journal by using EES, resulting at the exergy efficiency is 59 with thermal efficiency 43.96. The exergoenvironmental analyzed using SimaPro, resulting at exergoenvironmental factor of this system is 38.15. An optimization also being done at this research to get the optimum condition regarding its exergy and exergoenvironmental, the optimization was done using genetic algorithm by Matlab. Ten parameters was decided to be the decision variable at this optimization. There are 70 pareto optimal front, which then being choose for only one alternative by TOPSIS. The chosen alternativ can increase the exergy efficiency to 60.93 with its thermal efficiency is 46.78, and the exergoenvironmental factor decrease to 29.98. It can be said that the propulsion system which was generated in this research can be used as an alternative for LNG carrier propulsion system, regarding its good performance at exergy, energy and exergoenvironmental, compared to previous propulsion system. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Devi Adlyani
"ABSTRAK
Meningkatnya kebutuhan gas di kepulauan Indonesia, mengakibatkan beberapa industri membangun pembangkit berskala kecil. Namun letak pembangkit yang berbeda-beda mengakibatkan tidak semua kapal pengangkut gas dapat beroperasi terutama pada wilayah perairan dangkal di Sabang dan Nias. Pembangunan kapal LNG berukuran kecil atau small scale LNG carrier SSLC sebagai salah satu solusi permasalahan tersebut. Namun SSLC belum banyak digunakan, hanya terdapat 57 unit kapal SSLC di dunia pada 2016 lalu. Sehingga perancangan desain SSLC masih terbilang sulit. Oleh karena itu, perancangan desain dengan menggunakan desain parametrik untuk memudahkan perancangan kapal SSLC yang sesuai dengan kondisi Sabang dan Nias. Penelitian ini bertujuan untuk mengetahui dimensi utama kapal yang optimum untuk kapal berkapasitas muatan sebesar 2500 m3 dan 7500 m3 dari kapal SSLC 5000 m3 sebagai initial design dengan menggunakan kriteria parameter dimensi ratio L/B, B/T, T/H, dan L/H. Penentuan kriteria berdasarkan database kapal pembanding sebanyak 44 unit kapal. Dimensi utama dari initial design kapal SSLC 5000 m3 adalah L = 94,3 meter, B = 16,57 meter, T = 4,57 meter, dan H = 10,32 meter. Hasil penelitian ini adalah mendapatkan dimensi utama paling optimum yaitu L = 82,23 meter, B = 14,32 meter, T = 3,9 meter, dan H = 7,91 meter untuk kapal SSLC 2500 m3 dan L = 109,73 meter, B = 19,11 meter, T = 5,2 meter, H = 10,55 meter untuk kapal SSLC 7500 m3

ABSTRACT<>br>
The increasing demand for gas in the Indonesian archipelago caused some industries building small scale power plants. However, the location of different power plants caused not all of gas carriers being able to operate especially in shallow water areas in Sabang and Nias. The building of small scale LNG carrier SSLC as one of the solutions to this problem. But SSLC has not been widely used, there are only 57 units of SSLC in the world in 2016. It causes design planning of SSLC is still quite difficult. Therefore, parametric design can make easier to get the design that suitable with condition of Sabang and Nias. The purpose of this study is to determine the optimum rsquo s main dimensions with load capacity of 2500 m3 and 7500 m3 from SSLC 5000 m3 as initial design by using dimension ratios L B, B T, T H and L H. Determination of criteria based on the comparison vessel database of 44 units of SSLC. Main dimension of initial design 5000 m3 are L 94,3 meter, B 16,57 meter, T 4,57 meter, and H 10,32 meter. The results of this study is to get the optimum rsquo s main dimensions i.e. L 82,23 meter, B 14,32 meter, T 3,9 meter, and H 7,91 meter for 2500 m3 SSLC and L 109,73 meter, B 19,11 meter, T 5,2 meter, H 10,55 meter for 7500 m3 SSLC."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fawwaz Mu'tashim
"Salah satu upaya pemerintah Indonesia dalam memenuhi kebutuhan listrik di masa depan adalah melalui proyek pembangunan Mobile Power Plant di wilayah timur Indonesia yang menggunakan Liquified Natural Gas (LNG) sebagai bahan bakarnya. LNG disuplai oleh kapal Small Scale LNG Carrier (SSLNG) yang sebelumnya menerima muatan LNG melalui metode ship to ship. Penelitian ini bertujuan untuk mengetahui potensi bahaya dan level risiko melalui penilaian risiko pada kapal SSLNG saat proses transfer muatan LNG ship to ship. Tahapan penilaian risiko terdiri dari identifikasi bahaya, analisis frekuensi, analisis konsekuensi, dan menentukan level risiko. Identifikasi bahaya bertujuan untuk mengetahui potensi bahaya dengan menganalisis General Arrangement (GA), Process Flow Diagram (PFD) sistem penanganan kargo LNG, skema propulsi, dan komponen. Untuk memudahkan proses identifikasi maka sistem transfer dibagi menjadi tiga subsistem yaitu LNG transfer, vapor pumped back, dan Boil Off Gas (BOG) for fuel. Adapun potensi bahaya yang ditemukan ketika terjadi kebocoran antara lain pool fire, explosion, dan gas dispersion. Analisis frekuensi dilakukan dengan metode Fault Tree Analysis (FTA) untuk menganalisis frekuensi kebocoran pada tiap komponen dan Event Tree Analysis (ETA) untuk mendapatkan probabilitas kejadian bahaya. Terdapat 4 skenario diameter kebocoran komponen yaitu 25 mm, 50 mm, 100 mm, dan 200mm. Hasil perhitungan frekuensi menunjukkan frekuensi kebocoran tertinggi adalah subsistem BOG for fuel dengan nilai 2.29x10-03/tahun dengan kompresor sebagai komponen dengan frekuensi kebocoran tertinggi dengan nilai 7.1x10-04/tahun. Analisis konsekuensi menggunakan ALOHA sebagai aplikasi pemodelan konsekuensi pada tiap skenario untuk mengetahui jumlah fatality. Hasil simulasi konsekuensi menunjukkan korban terbanyak terjadi pada skenario pool fire dengan kebocoran 200 mm yakni berjumlah 19 orang kru kapal. Frekuensi dan fatality yang diperoleh kemudian direpresentasikan ke dalam F-N Curve untuk mengetahui level risiko. Pada skenario pool fire dan explosion pada semua subsistem, hasil yang didapatkan berada di area As Low As Reasonably Practicable (ALARP). Sedangkan pada skenario gas dispersion, hasil penilaian risiko menujukan pada area acceptable, yang artinya level risiko dapat diterima.
......One of the Indonesian government's efforts to meet future electricity needs is through a Mobile Power Plant development project in eastern Indonesia that uses Liquified Natural Gas (LNG) as its fuel. LNG is supplied by Small Scale LNG Carrier (SSLNG) vessels which previously received LNG cargo via the ship to ship method. This study aims to determine the potential hazard and level of risk through risk assessment on SSLNG vessels during the LNG ship to ship transfer process. The stages of risk assessment consist of hazard identification, frequency analysis, consequence analysis, and determining the level of risk. Hazard identification aims to identify potential hazards by analyzing the General Arrangement (GA), Process Flow Diagram (PFD) of the LNG cargo handling system, propulsion scheme, and components. To facilitate the identification process, the transfer system is divided into three subsystems, namely LNG transfer, vapor pumped back, and Boil Off Gas (BOG) for fuel. The potential hazards found when a leak occurs include pool fire, explosion, and gas dispersion. Frequency analysis was carried out using the Fault Tree Analysis (FTA) method to analyze the frequency of leaks in each component and Event Tree Analysis (ETA) to obtain the probability of a hazard event. There are 4 scenarios for component leak diameters, namely 25 mm, 50 mm, 100 mm and 200 mm. The results of the frequency calculation show that the highest leakage frequency is the BOG for fuel subsystem with a value of 2.29x10-03/year with the compressor as the component with the highest leakage frequency with a value of 7.1x10-04/year. Consequence analysis uses ALOHA as a consequence modeling application for each scenario to determine the number of fatalities. The consequence simulation results show that the highest number of victims occurred in the pool fire scenario with a 200 mm leak, namely 19 crew members. The frequency and fatality obtained are then represented in the F-N Curve to determine the level of risk. In the pool fire and explosion scenario for all subsystems, the results obtained are in the As Low As Reasonably Practicable (ALARP) area. Whereas in the gas dispersion scenario, the results of the risk assessment point to the acceptable area, which means the risk level is acceptable."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dzaky Ridho
"Pada proses rantai pasok LNG menggunakan kapal LNG Carrier, LNG dapat terevaporasi atau dapat disebut sebagai fenomena Boil-Off Gas (BOG). Faktor utama terjadi nya BOG pada kapal dikarenakan panas yang merambat ke dalam tangki LNG pada saat kapal membawa LNG. Panas yang merambat ke dalam tangki LNG dapat dicegah dengan memberikan material insulasi. International Maritime Organization (IMO) memberikan batas BOG per hari nya adalah 0.15% dari volume LNG/ hari nya. Penelitian ini bertujuan merancang tangki penyimpanan LNG pada kapal Small Scale LNG Carrier, pemilihan 3 variasi material yang dapat digunakan memberikan hambatan laju panas, perhitungan BOG per hari nya, dan perhitungan kerugian biaya diakibatkan BOG. Penelitian ini melakukan perhitungan hambatan laju panas melalui perpindahan panas konduksi dan konveksi dengan perhitungan numerik. Penelitian ini juga melakukan perancangan dengan 3 variasi rancangan material insulasi utama yang umum digunakan (Polyurethane Foam blowing agent HCFC 141 B) dan ramah lingkungan (Polyurethane Foam blowing agent HFC 245 Fa dan HFC 365 mfc). Hasil dari masing masing rancangan telah sesuai yang ditetapkan oleh IMO, dengan nilai BOG per hari masing masing rancangan adalah 0.1078%, 0.1240%, dan 0.1254%. Kerugian biaya akibat BOG setiap variasi rancangan juga tidak memberikan perbedaan yang siginifikan.
......In the LNG supply chain process using an LNG Carrier ship, LNG can be evaporated or can be referred to as the Boil Off Gas (BOG) phenomenon. The main factor for the occurrence of BOG on ships is due to the heat that propagates into the LNG tank when the ship carries LNG. The heat that propagates into the LNG tank can be prevented by providing an insulating material. The International Maritime Organization (IMO) provides a daily BOG limit of 0.15% of the LNG volume/day. This study aims to design an LNG storage tank on a Small-Scale LNG Carrier ship, selecting 3 variations of materials that can be used to provide heat resistance, calculating BOG per day, and calculating cost losses caused by BOG. This study calculates the heat resistance through conduction and convection heat transfer with numerical calculations. This study also carried out a design with 3 variations of the main insulation material designs that are commonly used (Polyurethane Foam blowing agent HCFC 141 B) and environmentally friendly (Polyurethane Foam blowing agent HFC 245 Fa and HFC 365 mfc). The results of each design were in accordance with what was determined by IMO, with BOG values per day for each design were 0.1078%, 0.1240%, and 0.1254%. The cost loss due to BOG for each design variation also does not provide a significant difference."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Nur Altaf
"Dunia sedang memiliki tantangan besar dalam menangani emisi gas rumah kaca (GRK). Dengan timbulnya emisi gas rumah kaca ini memiliki banyak dampak yang begitu besar terhadap perubahan iklim. Sektor transportasi khususnya industri pelayaran sendiri menyumbang sebesar 3% dari emisi gas rumah kaca pada tahun 2022 (Sinay, 2023). Sektor pembangkit listrik juga memiliki peranan besar dalam permasalahan emisi gas rumah kaca dikarenakan penggunaan bahan bakar fosil yang cukup besar untuk kebutuhan pembangkit listrik. Pembangunan infrastruktur dan konversi pembangkit listrik berbahan bakar gas menjadi salah satu usaha untuk menghasilkan energi yang bersih dalam rangka mencapai target Net zero Emmision. Untuk itu Pemerintah Indonesia berkomitmen berusaha meningkatkan penggunaan gas untuk kebutuhan domestik, melalui Keputusan Menteri Energi dan Sumber Daya Mineral Nomor 13K/13/MEM/2020 tentang Penugasan pelaksanaan penyediaan pasokan dan pembangunan infrastruktur Liquefied Natural Gas (LNG), serta konversi penggunaan bahan bakar minyak dengan LNG dalam penyediaan Tenaga Listrik. Komitmen tersebut didukung oleh program pemerintah tahun 2015 mengenai Pembangunan Pembangkit Listrik 35.000 MW di Indonesia. Dengan kondisi geografis tersebut proses transportasi LNG dari lokasi sumber LNG menuju pembangkit listrik menjadi tantangan tersendiri dikarenakan keterbatasan jaringan pipa gas di Indonesia. Tantangan tersebut dapat diatasi dengan adanya Small Scale LNG Carrier (SSLNG). Metode yang digunakan dalam penelitian ini adalah Capacitated Vehicle Routing Problem (CVRP) dan Linear Programming dengan fungsi objektif memperoleh sisa muatan distribusi paling minimum dari beberapa pilihan penggunaan jumlah kapal beserta variasi kecepatan. Analisa ekonomi juga dilakukan  berdasarkan kelayakan finansial. Hasil dari penelitian ini diperoleh masing-masing penggunaan model distribusi LNG untuk setiap kluster sebagai berikut, Kluster 1 yaitu Nusa Tenggara menggunakan model 1 dengan penggunaan 1 kapal  berkapasitas 15,600 CBM  dengan kecepatan 13 knot, Kluster 2 yaitu Maluku menggunakan model 1 dengan penggunaan 1 variasi kapal yaitu kapal berkapasitas 15,600 CBM dengan kecepatan kapal yang sama yaitu 13 knot, Kluster 3 yaitu Papua menggunakan model 2 dengan penggunaan 2 kapal yaitu 15,600 CBM dengan kecepatan 14 knot dan 10,000 CBM dengan kecepatan 11 knot. Berdasarkan hasil skenario pembuatan model distribusi LNG dengan perolehan rute dengan total sisa muatan paling minimum untuk Kluster 1 didapatkan total sisa muatan sebesar 4.23 CBM, untuk Kluster 2  didapatkan total sisa muatan sebesar 19.03 CBM dan Kluster 3 didapatkan total sisa muatan sebesar 121.52 CBM. Dari analisa ekonomi didapatkan untuk total CAPEX sebesar 421,700,883 US$. Untuk margin harga penjualan LNG setiap kluster sekurang kurangnya sebesar 1.5 USD/MMBTU pada kluster 1 dengan payback period dalam kurun waktu 8 tahun, 1 USD/MMBTU pada kluster 2 dengan payback period dalam kurun waktu 6 tahun dan 2 USD/MMBTU pada kluster 3 dengan payback period dalam kurun waktu 8 tahun.
......The world is currently facing a significant challenge in addressing greenhouse gas (GHG) emissions. The emergence of these emissions has substantial impacts on climate change. The transportation sector, particularly the shipping industry, contributed 3% of global GHG emissions in 2022 (Sinay, 2023). The power generation sector also plays a significant role in GHG emissions due to the substantial use of fossil fuels for electricity generation. Developing infrastructure and converting fossil-fuel-based power plants to gas is one of the efforts to produce clean energy to achieve the Net Zero Emission target. Therefore, the Indonesian government is committed to increasing the use of gas for domestic needs through the Decree of the Minister of Energy and Mineral Resources Number 13K/13/MEM/2020 concerning the assignment for the provision of supply and development of Liquefied Natural Gas (LNG) infrastructure, and the conversion of oil fuel use to LNG in electricity supply. This commitment is supported by the 2015 government program regarding the construction of 35,000 MW of power plants in Indonesia. Given the geographical conditions, transporting LNG from its source to power plants presents its own challenges due to the limited gas pipeline network in Indonesia. These challenges can be addressed with the use of Small Scale LNG Carriers (SSLNG). The method used in this study is the Capacitated Vehicle Routing Problem (CVRP) combined with Linear Programming, with the objective function to minimize the remaining load distribution from several options of ship usage and speed variations. An economic analysis was also conducted based on financial feasibility. The results of this study obtained each LNG distribution model for each cluster as follows: Cluster 1, Nusa Tenggara, using model 1 with a 15,600 CBM capacity ship at a speed of 13 knots; Cluster 2, Maluku, using model 1 with a 15,600 CBM capacity ship at the same speed of 13 knots; Cluster 3, Papua, using model 2 with two ships of 15,600 CBM at 14 knots and 10,000 CBM at 11 knots. Based on the scenario of creating an LNG distribution model with the minimum remaining load route, Cluster 1 obtained a total remaining load of 4.23 CBM, Cluster 2 obtained a total remaining load of 19.03 CBM, and Cluster 3 obtained a total remaining load of 121.52 CBM. From the economic analysis, the total CAPEX was found to be 421,700,883 USD. For the LNG selling price margin, each cluster required at least 1.5 USD/MMBTU for Cluster 1 with a payback period of 8 years, 1 USD/MMBTU for Cluster 2 with a payback period of 6 years, and 2 USD/MMBTU for Cluster 3 with a payback period of 8 years."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Triana Yusman
"ABSTRAK
Berdasarkan data kebutuhan energi di Indonesia, pembangunan pembangkit listrik di beberapa wilayah sedang dicanangkan. Perencanaan sistem logistik yang optimal akan mendapatkan manfaat. PLN melalui RUPTL tahun 2016-2025 melaporkan rencana pengembangan pembangkit listrik bermesin/berbahan bakar gas PLTG/MG di wilayah Sumatera. PLTG/MG akan beroperasi dengan suplai gas bumi dari Floating Storage Regasification Unit FSRU Arun, kemudian didistribusikan menggunakan Small Scale LNG Carrier SSLC menuju terminal penerima Receiving Terminal yang melayani pembangkit listrik di wilayah Sumatera. Pada penelitian ini dilakukan perancangan distribusi LNG dari FSRU Arun dengan SSLC menuju terminal penerima yang melayani pembangkit listrik tenaga gas yang berada di wilayah Sumatera. Optimasi distribusi LNG dilakukan dengan menggunakan Algoritma Greedy dan Pemrograman Linear dengan fungsi keputusan memaksimalkan muatan kapal. Variabel masukan berupa kebutuhan LNG dari terminal penerima, kapal dengan variasi kapasitas muat, kecepatan kapal, jarak distribusi dan biaya transportasi akan menjadi masukan dalam optimasi yang akan dilakukan. Dari proses optimasi didapatkan hasil dimana kapal 2.500 cbm dengan kecepatan 15 knot melayani rute Arun-Sabang-Nias-Arun dan kapal ukuran 7.500 cbm dengan kecepatan 13 knot melayani rute Arun-Bangka-Belitung-Lamoung-Arun. Estimasi Capital Expenditure CAPEX terbesar adalah di wilayah Nias dan terkecil di wilayah Sabang. Dari perhitungan yang dilakukan, diketahui bahwa Operational Expenditure OPEX kapal 7.500 cbm lebih besar dibandingkan kapal 2.500 cbm.

ABSTRACT
Based on data of energy needs in Indonesia, the construction of power plants in some areas is being declared. Planning an optimal logistics system will benefit. PLN through RUPTL 2016 2025 reported the development plan of gas fired power plant PLTG MG in Sumatera area. PLTG MG designed to operate by burning natural gas which supplied from Floating Storage Regasification Unit FSRU in Arun and will be transported using Small Scale LNG Carrier SSLC to each receiving terminal that serving several PLTG MG. This research proposed LNG distribution network from Arun to receiving terminals in Sumatera. Optimization of LNG distribution done by using Greedy Algorithm and Linear Programming with maximum capacity as the objective function. Variable input for the optimization namely power plant LNG demand, vessel capacity, vessel speed, matix distance and transportation cost. Optimization results showed there are two vessels should utilized for optimum LNG Distribution. 1st vessel with capacity 2,500 cbm 15 knot serving for LNG distribution routes from Arun Sabang Nias Arun and the 2nd vessel with 7,500 cbm 13 knot serving LNG distribution routes from Arun Bangka Belitung Lampung Arun. The largest estimate of Capital Expenditure CAPEX is in Nias area and the smallest is in Sabang area. From the calculations, it is known that Operational Expenditure OPEX ship 7,500 cbm larger than ship 2,500 cbm. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Afdal Afwan
"ABSTRAK
Profil penegar memiliki peran penting untuk memperkuat konstruksi kapal, karena dapat memecah beban yang diterima oleh lambung kapal. Terdapat berbagai jenis profil penegar yang dapat diterapkan pada kapal seperti jenis L, I, T dan bulb. Untuk mendapatkan jenis profil penegar yang paling optimum pada konstruksi kapal maka diperlukanlah optimasi. Proses optimasi dilakukan terhadap konstruksi midship section kapal small LNG carrier 5000 CBM. Optimasi dilakukan dengan menggunakan metode analitik rules IACS CSR penegar dan numerik simulasi ANSYS dengan variasi jenis profil penegar. Pada penelitian ini dihasilkan bahwa profil penegar L merupakan profil yang paling optimum diterapkan pada konstruksi midship section kapal small LNG carrier 5000 CBM. Hal ini karena profil penegar jenis ini memiliki massa yang ringan, fatigue life yang besar, serta tegangan dan regangan yang kecil.

ABSTRACT
Steffener has an important role to strength of ship construction, because it can dispart the load received by the hull of ship. There are different types of stiffener that can be applied to ships such as L, I, T and bulb types. To get the most optimum type of stiffener in the vessel construction, optimization is required. The optimization process is carried out on the construction of midship section of small LNG carrier 5000 CBM. The optimization is done by using analytical method rules IACS CSR numerical assignment ANSYS simulation with variations of stiffeners. In this research, it is found that stifeener L is the most optimum profile applied in the construction of midship section of small LNG carrier 5000 CBM. This is because the profile has a light mass, a large fatigue life, as well as a small stress and strain. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mazeni Alwi
"Dalam rantai pasoknya, gas bumi di ubah menjadi liquid untuk pengiriman dan penyimpanan karena pada wujud cairnya volume gas bumi kira-kira 600 kali lebih kecil dari volumenya dalam wujud gas. Dalam Pengoperasian Kapal LNG Carrier, setiap kapal pengangkut LNG akan menghasilkan boil-off gas dikarenakan panas dari lingkungan luar kapal yang dapat merambat ke dalam tangki LNG. Panas yang merambat ke dalam tangki LNG dapat dicegah dengan memberikan material insulasi. International Maritime Organization (IMO) memberikan batas BOG per hari nya adalah 0.15% dari volume LNG/ hari nya. Pada penelitian Dzaky Ridho, (2017) “Perancangan Termal Tangki LNG Kapasitas 3500 CBM pada Small Scale LNG Carrier”, dilakukan perbandingan material insulasi yang berpengaruh terhadap terjadinya BOG. Penelitian ini bertujuan merancang tangki penyimpanan LNG pada kapal Small Scale LNG Carrier,dan pemanfaat Boil-off Gas(BOG) dari LNG. Pada rancangan ini nilai BOR 0,1213% dimana Berat LNG terevaporasi selama berlayar adalah sebesar 7,028 ton/voyage. Mesin yang digunakan dalam rancangan yaitu Wärtsilä 6L34DF.dengan kapasitas 3000kW, dengan Skema pemanfaatan Boil of Gas untuk bahan bakar mesin menggunakan Dual Fuel Direct Drive (DFDD). BOG dapat mecover 20,38 hours atau sekitar 23,34% dari perjalanan. Selain itu, rancangan ini juga memanfaatkan panas Exhaust Gas engine untuk memanaskan BOG yang akan digunakan ke mesin, karena BOG harus dipanaskan sampai titik 450 C sebelum digunakan. Heat Exchanger yang di desain yaitu tipe Shell andTube dengan Panjang HEX 1,67 m.
......In the supply chain, natural gas is converted into liquid for shipping and storage because in its liquid form the volume of natural gas is approximately 600 times smaller than its volume in gaseous form. In LNG Carrier Ship Operation, each LNG carrier ship will produce boil-off gas due to heat from the outside environment of the ship that can propagate into the LNG tank. The heat that propagates into the LNG tank can be prevented by providing an insulating material. The International Maritime Organization (IMO) provides a daily BOG limit of 0.15% of the LNG volume/day. In Dzaky Ridho's research, (2017) "Thermal Design of an LNG Tank with a Capacity of 3500 CBM on a Small Scale LNG Carrier", a comparison of the insulation material that affects the occurrence of BOG is carried out. This study aims to design an LNG storage tank on a Small Scale LNG Carrier ship, and utilize Boil-off Gas (BOG) from LNG. In this design, the BOR value is 0.1213% where the weight of LNG evaporated during sailing is 7.028 tons/voyage. The engine used in the design is Wärtsilä 6L34DF.with a capacity of 3000kW, with a Boil of Gas utilization scheme for engine fuel using Dual Fuel Direct Drive (DFDD). BOG can cover 20.38 hours or about 23.34% of the trip. In addition, this design also utilizes the heat of the Exhaust Gas engine to heat the BOG to be used in the engine, because the BOG must be heated to a point of 450 C before use. The designed heat exchanger is the Shell andTube type with a HEX length of 1.67 m."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library