Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Nasution, Athallah Ghiffary
"Meningkatnya penggunaan bahan bakar fosil telah membawa dampak yaitu peningkatan emisi karbon dioksida. Salah satu cara untuk mengatasi masalah ini adalah dengan mencari energi alternatif pengganti bahan bakar fosil. Salah satu dari energi alternatif itu adalah hidrogen. Hidrogen memiliki kapasitas penyimpanan yang besar dengan penggunaan yang relatif lebih aman dan ramah lingkungan. Namun produksi hidrogen dalam skala besar masih sulit dilakukan. Salah satu metode pembentukan hidrogen adalah dengan elektrolisis air. Hidrogen terbentuk melalui reaksi evolusi hidrogen yang terjadi pada katoda. Namun prosesnya memerlukan energi yang cukup besar, sehingga dibutuhkan sebuah katalis untuk membantu jalannya reaksi. Salah satu kandidat sebagai katalis adalah material 2 dimensi yang disebut MXene. MXene dinilai sebagai kandidat yang bagus dikarenakan permukaannya hidrofilik dan mempunyai konduktivitas yang baik. Untuk meningkatkan aktivitas katalititk dari MXene, digunakan prekursor logam perak untuk fabrikasi nanokomposit MXene/Ag melalui metode reduksi. Penelitian ini berhasil mensintesis nanokomposit MXene/Ag dengan beberapa variasi jumlah Ag. Nanokomposit MXene/Ag yang dihasilkan telah dikarakterisasi dengan XRD, FTIR, TEM, SEM dan SEM EDX. Hasil pengujian menunjukkan nanokomposit MXene/Ag mengalami perubahan sifat fisika dan kimia, seperti perubahan warna, peningkatan konduktivitas dan aktivitas katalitik.

The increasing use of fossil fuels has led to an increase in carbon dioxide emission. One way to solve this problem is to find alternative energy to replace fossil fuels. One of those alternative energies is hydrogen. Hydrogen has a large storage capacity with relatively safer and environmentally safe to use. However, hydrogen production on a large scale is difficult to do. One method of hydrogen formation is by water electrolysis. Hydrogen is formed through the hydrogen evolution reaction that occurs at the cathode. However, due to the process that uses a large amount of energy, a catalyst is needed to help the reaction. One of the candidates as a catalyst is a 2-dimention material called MXene. MXene is considered a good candidate due to its hydrophilic surface with good conductivity. To increase the catalytic activity of MXene, silver precursor was used as a precursor to fabricate MXene/Ag nanocomposite through reduction. Based on the results, the synthesis of MXene/Ag nanocomposite by reduction can be done with optimal results. The test results showed that MXene/Ag nanocomposites experienced changes in physical and chemical properties, such as change in color, increased conductivity and catalytic activity."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Ruliandini
"Biopelumas berbahan dasar metil ester dari minyak kelapa sawit (POME) adalah salah satu pelumas alternatif yang paling mungkin dikembangkan saat ini karena berasal dari minyak tumbuhan yang ketersediaannya tidak terbatas. Sementara itu, MXene, material baru berdimensi dua, belum banyak diaplikasikan sebagai zat aditif ke dalam pelumas terutama biopelumas. Menggunakan pendekatan simulasi dinamika molekuler, kestabilan MXene didalam POME beserta sifat termofisika campurannya akan diprediksikan. Kedalam campuran POME-MXene kemudian ditambahkan juga partikel nano unggul lainnya yaitu Al2O3. Dengan visualisasi, fenomena interaksi secara atomik yang terjadi diantara; POME-MXene, MXene- Al2O3 dan POME-MXene/Al2O3 dapat diketahui. Prediksi kestabilan, densitas, koefisien difusi dan konduktivitas termal dihasilkan dengan metode Equilibrium Molecular Dynamics (EMD) sedangkan metode Non-Equilibrium Molecular Dynamics (NEMD) diterapkan untuk memprediksikan nilai viskositas. Potensial Condensed-phase Optimized Molecular Potential for Atomistic Potential Studies (COMPASS) yang dihibridisasi dengan potensial sederhana LJ 12-6 digunakan untuk mendefinisikan interaksi intra dan inter-molekular pada molekul MXene, Al2O3 serta campuran POME-MXene/Al2O3. Dibandingkan dengan hasil uji laboratorium, didapatkan deviasi rata-rata kurang dari 10% sehingga sifat termofisika pada POME dapat diprediksikan dengan baik. Hasil visualisasi yang diperoleh mampu menjawab bagaimana mekanisme dan bentuk agregasi nanopartikel dalam POME, sehingga dapat menjelaskan sifat termofisika yang khas pada campuran POME dan MXene beserta hibridisasinya. Terutama nilai konduktivitas termal yang semakin turun seiring naiknya temperatur.

Due to its sustainable resources, Palm Oil Methyl Ester-based lubricants (POME) is one of the alternative lubricants most likely to be developed today. In this study, POME was reinforced by a novel 2D nanomaterial, MXene and other prominent nano material Al2O3. Using molecular dynamics simulation, the stability of MXene in POME and its thermophysical properties were predicted. The predicted interaction between two different dimension (MXene-Al2O3) were also covered. With visualization, other phenomenon of atomic interactions that occur between; POME-MXene and POME-MXene/Alumina were revealed. Predictions of stability, density, diffusion coefficient and thermal conductivity were generated by EMD method while the NEMD method was applied to predict viscosity values. COMPASS which was used to define intra-molecular interactions of POME was hybridized with the simple potential LJ 12-6 which defines the intra and inter-molecular interactions of MXene, Alumina and POME-MXene/Alumina molecules. Compared to laboratory test results, the average deviation is less than 10% so that the thermophysical properties of POME in a good agreement. The visualization results obtained were able to answer how the mechanism and form of nanoparticle aggregation in POME, so as to explain the thermophysical properties typical of the mixture of POME and MXene and its hybridization. Especially the value of thermal conductivity that decreases as the temperature rises."
Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Salsabila Maysarah Kuntjoro
"Peningkatan kebutuhan dan konsumsi energi setiap tahunnya tentu menjadi tantangan bagi seluruh dunia dalam menemukan sumber energi yang tidak berbahaya bagi lingkungan karena umumnya hampir sebagaian besar sumber energi saat ini berasal dari bahan bakar fossil yang mana seperti diketahui, bahan bakar fosil dapat menghasilkan emisi CO2 yang termasuk sebagai gas rumah kaca. Salah satu sumber energi yang cukup menjanjikan sebagai alternatif dari bahan bakar fosil adalah Hidrogen. Produksi hidrogen dapat dihasilkan dari elektrolisis air melalui water spiltting. Dalam proses water splitting, elektrokatalis adalah faktor penting yang dapat meminimalkan nilai overpotential. Material yang berpotensi digunakan sebagai elektrokatalis adalah MXene (Ti3C2Tx) yang disisipkan dengan material lainnya yaitu Multi-walled carbon nanotubes (MWCNT) terfungsionalisasi. Oleh karena itu, pada penelitian ini dilakukan sintesis nanokomposit MXene/MWCNT melalui metode hidrotermal untuk digunakan sebagai elektrokatalis pada reaksi evolusi hidrogen. Nanokomposit MXene/MWCNT yang telah disintesis kemudian dikarakerisasi menggunakan XRD, SEM, TEM, FTIR, BET dan spektroskopi Raman. Lalu untuk mengetahui performa elektrokatalisnya didapatkan dari pengujian elektrokimia LSV, CV, EIS dan kronoamperometri. Berdasarkan hasil penelitian diketahui bahwa nilai onset dan overpotential nanokomposit MXene/MWCNT sebesar 267mV dan 517mV, yang mana nilai tersebut paling kecil dibandingkan elektroda lainnya yang digunakan pada penelitian ini dan melalui perhitungan ECSA dari pengujian CV didapatkan nilai luas permukaan aktif elektrokimia nanokomposit MXene/MWCNT sebesar 93,75cm2. Kemudian berdasarkan pengukuran EIS diketahui nanokomposit MXene/MWCNT memiliki hambatan yang kecil dan konduktivitas yang baik. Selain itu untuk kestabilannya yang dievaluasi melalui pengujian elektrokimia kronoamperometri, didapatkan bahwa nanokomposit MXene/MWCNT memiliki kestabilan yang cukup baik dalam digunakan sebagai elektrokatalis pada reaksi evolusi hidrogen.

The increase in energy demand and consumption every year is certainly a challenge for the whole world in finding energy sources that are not harmful to the environment because almost large source of energy today comes from fossil fuels. As known, fossil fuels can produce CO2 emissions which is one of a greenhouse gas. Hydrogen is one of the promising energy sources as an alternative to fossil fuels. Hydrogen production can be produced from water electrolysis through water splitting. In the process of water splitting, electrocatalyst is an important factor that can minimize the overpotential value. The material that has the potential to be used as an electrocatalyst is MXene (Ti3C2Tx) which is inserted with other materials, namely functionalized Multi-walled carbon nanotubes (MWCNT). Therefore, in this research, the synthesis of MXene/MWCNT nanocomposites by hydrothermal method was carried out to be used as an electrocatalyst in the hydrogen evolution reaction. The synthesized MXene/MWCNT nanocomposite was then characterized using XRD, SEM, TEM, FTIR, BET and Raman spectroscopy. Then to find out the performance of the electrocatalyst obtained from LSV, CV, EIS and chronoamperometric electrochemical tests. Based on the research results, we found out that the onset and overpotential values ​​of the MXene/MWCNT nanocomposites are 267mV and 517mV, which are the smallest values ​​compared to the other electrodes used in this study and through ECSA calculations from the CV testing, the value of the electrochemical active surface area of ​ MXene/MWCNT nanocomposites is 93,75cm2. Then based on EIS measurements it is known that the MXene/MWCNT nanocomposite has small resistance and good conductivity. In addition to its stability which was evaluated through chronoamperometric electrochemical testing, it was found that the MXene/MWCNT nanocomposite had fairly good stability in being used as an electrocatalyst in the hydrogen evolution reaction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rachmadani Hasanah
"Dalam beberapa tahun terakhir, perkembangan teknologi yang pesat membuat investasi pada teknologi bidang hidrogen semakin banyak. Produksi hidrogen yang stabil menggunakan teknik elektrolisis air dianggap menjadi salah satu cara yang menjanjikan untuk mendapatkan sumber energi listrik terbarukan. Penggunaan teknik elektrolisis air alkali (AWE) untuk mengubah air menjadi hidrogen dan oksigen murni dapat mengurangi kadar emisi gas CO2. Maka dari itu dikembangkan elektrokatalis yang lebih efektif untuk proses tersebut, yaitu nanokomposit MoS2/MXene. Pada fabrikasi material nanokomposit MoS2/MXene, didapatkan komposit dengan nilai konduktifitas dan nilai aktivitas yang tinggi untuk reaksi evolusi hidrogen. Hasil karakteriasi sintesis MoS2, MXene dan nanokomposit MoS2/MXene, yang menggunakan karakterisasi SEM, TEM, XRD dan Spektroskopi Raman terlihat bahwa masing-masing senyawa prekursor komposit maupun nanokomposit MoS2/MXene berhasil disintesis. Berdasarkan hasil karakterisasi BET, terlihat nanokomposit MoS2/MXene memiliki luas permukaan yang lebih kecil (58,091 m2/g) dibandingkan dengan MXene (87,828 m2/g) dan MoS2 (67,441 m2/g). Kemudian fabrikasi elektroda dengan variasi GCE/MXene, GCE/MoS2, dan GCE/MoS2/MXene untuk dilakukan uji aktivitas elektrokatalik menggunakan karakterisasi Linear Sweep Voltametry (LSV) diperoleh nilai onset potensial, overpotential dan tafel slope pada elektroda GCE/MoS2/MXene memiliki nilai yang mendekati logam Pt untuk ketiga nilai tersebut. Kemudian melalui uji Electrochemically Active Surface Area (ECSA) diperoleh luas permukaan aktif yang paling tinggi pada nanokomposit MoS2/MXene. Berdasarkan uji EIS diketahui nanokomposit MoS2/MXene memiliki nilai hambatan transfer muatan sebesar 1,65 kΩ. dan memiliki stabilitas yang baik melalui uji kronoamperometri selama 9000 detik.

Nowadays, hydrogen technology undergoes rapid advancement which causes high demand for investment in this field. Stable hydrogen production which utilizes water electrolysis techniques is a promising way to obtain renewable sources of electrical energy. By using the alkaline water electrolysis (AWE) technique to convert water to pure hydrogen and oxygen the method can also reduce CO2 gas emission. Therefore, an electrocatalyst with better effectiveness for this process was developed, one of them is MoS2/MXene nanocomposite, with high conductivity and high activity values for the hydrogen evolution reaction (HER) are obtained. The results of the characterization of the synthesis of MoS2, MXene and the MoS2/MXene nanocomposite, using SEM, TEM, XRD and Raman Spectroscopy characterization, showed that each composite precursor compound and MoS2/MXene nanocomposite were successfully synthesized. Based on the BET characterization results, it appears that the MoS2/MXene nanocomposite has a smaller surface area (58.091 m2/g) compared to MXene (87.828 m2/g) and MoS2 (67.441 m2/g). Then fabricate the electrodes with variations of GCE/MXene, GCE/MoS2, and GCE/MoS2/MXene to test the electrocatalytic activity using the Linear Sweep Voltametry (LSV) characterization to obtain the initial potential, overpotential and tafel slope values of the GCE/MoS2/MXene electrodes which approaches metal Pt for all three values. Then through the Electrochemically Active Surface Area (ECSA) test, the highest active surface area was obtained on the MoS2/MXene nanocomposite. Based on the EIS test, it was found that the MoS2/MXene nanocomposite had a charge transfer resistance value of 1.65 kΩ. and has good stability through chronoamperometric test for 9000 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lyubimaya Danindra Nugroho
"Meningkatnya kebutuhan energi setiap tahun mendorong pencarian sumber energi ramah lingkungan. Mayoritas sumber energi saat ini berasal dari bahan bakar fosil yang menghasilkan emisi CO2 sebagai gas rumah kaca. Hidrogen merupakan alternatif yang menjanjikan dan dapat diproduksi melalui elektrolisis air. Dalam proses ini, elektrokatalis sangat penting untuk meminimalkan overpotensial. Cr2CTx MXene, yang digabungkan dengan multi-walled carbon nanotubes (MWCNT) terfungsionalisasi, memiliki potensi sebagai elektrokatalis. Penelitian ini mensintesis nanokomposit MWCNT/Cr2CTx MXene melalui metode hidrotermal untuk digunakan dalam reaksi evolusi hidrogen. Nanokomposit yang disintesis dikarakterisasi menggunakan XRD, SEM, TEM, FTIR, dan Raman. Performanya sebagai elektrokatalis dievaluasi melalui LSV, CV, EIS, dan kronoamperometri. Hasil penelitian menunjukkan bahwa nanokomposit MWCNT/Cr2CTx MXene memiliki onset dan overpotensial terendah sebesar 231 mV dan 112 mV dibandingkan dengan elektrode lain. Nilai ECSA dari CV adalah 1,66 cm². EIS mengungkapkan hambatan rendah dan konduktivitas baik. Selain itu, pengujian kronoamperometri menunjukkan kestabilan yang baik, menjadikan nanokomposit ini cocok sebagai elektrokatalis dalam reaksi evolusi hidrogen.

The increasing energy demand each year drives the search for environmentally friendly energy sources. Currently, most energy sources come from fossil fuels that produce CO2 emissions as greenhouse gases. Hydrogen is a promising alternative and can be produced through water electrolysis. In this process, electrocatalysts are crucial to minimize overpotential. Cr2CTx MXene, combined with functionalized multi-walled carbon nanotubes (MWCNT), has potential as an electrocatalyst. This study synthesized MWCNT/Cr2CTx MXene nanocomposites using the hydrothermal method for use in hydrogen evolution reactions. The synthesized nanocomposites were characterized using XRD, SEM, TEM, FTIR, and Raman spectroscopy. Their performance as electrocatalysts was evaluated through LSV, CV, EIS, and chronoamperometry tests. The results showed that the MWCNT/Cr2CTx MXene nanocomposites had the lowest onset and overpotential values of 231 mV and 112 mV compared to other electrodes. The ECSA value from CV was 1.66 cm². EIS revealed low resistance and good conductivity. Additionally, chronoamperometry tests demonstrated good stability, making these nanocomposites suitable as electrocatalysts for hydrogen evolution reactions."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chandra Beixon
"Produksi energi hidrogen yang bersih dan berkelanjutan, memerlukan elektrokatalis yang ekonomis, serbaguna, dan memiliki performa yang baik dalam water splitting. MXenes, sebuah kelompok material dua dimensi (2D) yang baru dikembangkan memiliki karakteristik fisik dan kimia yang khas serta memiliki berbagai aplikasi. Namun, penerapannya dalam sel elektrokatalitik untuk menghasilkan hidrogen terhambat dikarenakan aktivitas Kimia Intrinsik yang Rendah, densitas situs aktif yang terbatas, dan transpor elektron yang tidak memadai. Pada percobaan ini, telah dilakukan sintesis MWCNT/V2CTx dimana dengan memasukkan karbon nanotube (CNT) ke dalam lembaran V2CTx MXene, menciptakan saluran jaringan konduktif yang meningkatkan difusi ion dan aktivitas elektrokimia. MWCNT/V2CTx yang telah disintesis kemudian dikarakerisasi menggunakan XRD, TEM, FTIR, dan spektroskopi Raman. Lalu diuji performanya dengan pengujian LSV, CV, EIS, dan kronoamperometri. Dari hasil penelitian didapatkan nilai onset potential dan overpotential dari MWCNT/V2CTx sebesar 443 mV dan 549 mV dimana nilai tersebut merupakan nilai paling kecil dibandingkan dengan material penyusunnya. Melalui uji ECSA, dan uji EIS diketahui bahwa MWCNT/V2CTx memiliki luas permukaan aktif paling tinggi dan hambatan transfer muatan sebesar 2869 Ω. Dari hasil pengujian kronoamperometri diketahui bahwa MWCNT/V2CT­x memiliki kestabilan yang cukup baik sebagai elektrokatalis pada reaksi evolusi hidrogen.

The production of clean and sustainable hydrogen energy requires economical, versatile electrocatalysts with good performance in water splitting. MXenes, a newly developed group of two-dimensional (2D) materials, possess unique physical and chemical characteristics and have various applications. However, their application in electrocatalytic cells for hydrogen production is hindered by low intrinsic chemical activity, limited active site density, and inadequate electron transport. In this experiment, MWCNT/V2CTx was synthesized by incorporating carbon nanotubes (CNT) into V2CTx MXene sheets, creating conductive network channels that enhance ion diffusion and electrochemical activity. The synthesized MWCNT/V2CTx was characterized using XRD, TEM, FTIR, and Raman spectroscopy. Its performance was then tested using LSV, CV, EIS, and chronoamperometry. The research results showed that the onset potential and overpotential values of MWCNT/V2CTx were 443 mV and 549 mV, respectively, which are the lowest values compared to its constituent materials. Through ECSA and EIS tests, it was found that MWCNT/V2CTx has the highest active surface area and a charge transfer resistance of 2869 Ω. Chronoamperometry tests revealed that MWCNT/V2CTx has good stability as an electrocatalyst in the hydrogen evolution reaction.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael Lesa
"Pada era revolusi industri ini, kebutuhan energi selalu meningkat. Sebagian besar kebutuhan energi ini dicukupi menggunakan bahan bakar fosil yang merupakan penyumbang emisi gas CO2. Hidrogen merupakan salah satu alternatif yang dapat menggantikan bahan bakar fosil karena densitas gravimetriknya yang tinggi. Produksi hidrogen bebas emisi dapat dilakukan melalui proses elektrolisis air alkali yang memanfaatkan suatu elektrokatalis. Salah satu elektrokatalis potensial adalah NiFe2O4 berpori yang memiliki kemampuan elektrokatalisis lebih baik jika terintegrasi dengan MXene sebagai substrat konduktif. Pada penelitian ini dilakukan sintesis NiFe2O4 nanopori menggunakan SBA-15 sebagai hard template dengan metode nanocasting sedangkan sintesis MXene dilakukan melalui metode etching dan eksfoliasi. Kemudian dilakukan preparasi nanokomposit MXene/NiFe2O4 nanopori menggunakan metode hidrotermal. Dari hasil karakterisasi XRD, TEM, dan Raman, terlihat bahwa masing-masing senyawa prekursor komposit maupun nanokomposit MXene/NiFe2O4 nanopori telah berhasil disintesis. Lalu berdasarkan karakterisasi BET, terlihat bahwa komposit yang dipreparasi memiliki luas permukaan lebih tinggi (176,678 m2/g) dibandingkan MXene (77,946 m2/g) dan m-NiFe2O4 (102,395 m2/g). Senyawa -senyawa yang telah dipreparasi lalu diuji secara elektrokimia melalui uji LSV, ECSA, EIS dan kronoamperometri. Pengujian LSV menunjukkan komposit yang dipreparasi memiliki nilai onset potential serta overpotential paling kecil dibandingkan m-NiFe2O4 dan MXene yang menunjukkan komposit yang dipreparasi memiliki performa reaksi evolusi hidrogen paling baik. Melalui uji ECSA, diperoleh luas permukaan aktif paling tinggi pada komposit. Kemudian berdasarkan uji EIS diketahui komposit m-NiFe2O4/MXene memiliki hambatan transfer muatan sebesar 338 kΩ. Lalu berdasarkan uji stabilitas, diketahui bahwa elektroda GCE/ NiFe2O4/MXene memiliki stabilitas yang cukup baik bahkan setelah 1000 siklus CV serta uji kronoamperometri jangka panjang dengan efisiensi faraday hidrogen yang dihasilkan sebesar 0,022%.

In the era of industrial revolution, energy demand is always increasing. Most of this energy need are fulfilled using fossil fuels which are a contributor to CO2 gas emissions. Hydrogen is one of the alternatives that can replace fossil fuels because of its high gravimetric density. Emission-free hydrogen production can be carried out through an alkaline water electrolysis process utilizing an electrocatalyst. One of the potential electrocatalysts is the porous NiFe2O4 which has better electrocatalytic ability when integrated with MXene as a conductive substrate. In this study, nanoporous Ni-Fe2O4 was synthesized using SBA-15 as a hard template with nanocasting method while MXene was synthesized via etching and exfoliation method. The preparation of nanoporous MXene/NiFe2O4 nanocomposite was carried out using the hydrothermal method. From the results of XRD, TEM, and Raman characterization, it can be seen that each composite precursor compound and the composite itself has been successfully synthesized. Then based on the BET characterization, it was seen that the prepared composite had a higher surface area (176.678 m2/g) than MXene (77.946 m2/g) and m-NiFe2O4 (102.395 m2/g). The compounds that have been prepared were then tested electrochemically through LSV, ECSA, EIS and chronoamperometric tests. The LSV test showed that the prepared composite had the smallest onset potential and overpotential values compared to m-NiFe2O4 and MXene, which indicated that the prepared composite has the best hydrogen evolution reaction performance. Through the ECSA test, the highest active surface area was obtained in the composite. Then based on the EIS test, it is known that the NiFe2O4/MXene composite has charge transfer resistance of 338 kΩ. Then based on the stability test, it was found that the GCE/m-NiFe2O4/MXene electrode had good stability even after 1000 CV cycles and long time chronoamperometric tests with 0,022% faradaic efficiency."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yusalma Rizqi Wibowo
"Terobosan teknologi diperlukan untuk memenuhi kebutuhan energi dunia tanpa membahayakan lingkungan. Salah satu terobosan ini adalah energi hidrogen yang melibatkan penggunaan energi terbarukan sepenuhnya sehingga meminimalisasi emisi gas rumah kaca. Salah satu bidang yang berkembang terkait dengan energi hidrogen adalah pemecahan air secara fotoelektrokimia. Pada penelitian ini, dipreparasi material fotoanoda BiVO4/(001)-TiO2/MXene. Sintesis material TiO2 nanosheet dengan paparan faset (001) dilakukan dengan metode hidrotermal sedangkan sintesis MXene dengan proses etching dan eksfoliasi. Dari hasil karakterisasi X-Ray Diffraction, Spektrofotometer Raman, Spektrofotometer UV- Diffuse Reflectance, Brunaeur-Emmet-Teller, Scanning Electron Microscope dan Transmission Electron Microscope telah menunjukkan bahwa material berhasil disintesis. Kemudian dilakukan preparasi fotoanoda BiVO4 yang diintegrasikan dengan material TiO2 nanosheet dan MXene melalui metode doctor blade. Untuk melihat pengaruh pemaparan faset kristal (001), dilakukan perbandingan dengan TiO2 komersial P25. Hasil fotoanoda yang disintesis kemudian dikarakterisasi dengan X-Ray Diffraction, Spektrofotometer UV- Diffuse Refectance, dan Scanning Electron Microscope lalu dilakukan aplikasi fotooksidasi air dengan pengujian Cyclic Voltammetry, Linear Sweep Voltammetry, dan Chronoamperometry.

Innovations in technology are needed to supply the world's energy needs without endangering the environment. One of these breakthroughs is hydrogen energy, which involves the use of renewable energy to minimize greenhouse gas emissions. Photo electrochemistry water splitting is one of the recent studies associated with hydrogen energy. In this study, the BiVO4/(001)-TiO2/MXene photoanode material was prepared. The synthesis of TiO2 nanosheet material with exposure facet (001) is done by the hydrothermal method, while MXene is synthesized by etching and exfoliation processes. From X-ray Diffraction, the Raman Spectrophotometer, UV-Diffuse Reflectance Spectrophotometer, Brunaeur-Emmet-Teller, Scanning Electron Microscope, and Transmission Electron Microscope have shown that the material was successfully synthesized. A BiVO4 photoanode is prepared, and then integrated with TiO2 nanosheet and MXene material via doctor blade method. To see the effects of crystal facet exposure (001), it was compared with commercial TiO2 P25. The results of the synthesized photoanodes were then characterized with X-ray Diffraction, UV-Diffuse Reflectance Spectrophotometer, and Scanning Electron Microscope, and photo electrochemistry water oxidation was then tested with Cyclic Voltammetry, Linear Sweep Voltammetry, and Chronoamperometry."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cleonie Aurellia Liemson
"Revolusi industri saat ini telah membawa kemajuan signifikan dalam berbagai sektor, namun ini juga berdampak pada peningkatan, termasuk kontaminasi air. Polutan utama yang muncul akibat aktivitas industri dan bersifat antropogenik adalah p-nitrofenol. Pelepasan p-nitrofenol ke lingkungan menimbulkan risiko yang serius bagi berbagai organisme hidup. Metode yang efektif untuk penaganan p-nitrofenol adalah melalui mekanisme oksidasi dengan H2O2, dan salah satu material katalis potensial adalah I-Cu nanozyme yang memiliki kemampuan katalisis seperti lakase sehingga mampu melakukan oksidasi polutan melalui situs aktif. Pada penelitian ini dilakukan imobilisasi I-Cu nanozyme dengan Ti3C2Tx sebagai katalis untuk oksidasi p-nitrofenol. I-Cu nanozyme disintesis dengan metode solvothermal, sedangkan disintesis Ti3C2Tx MXene dengan metode etching dan eksfoliasi. Preparasi nanokomposit Ti3C2Tx MXene/I-Cu nanozyme dilakukan menggunakan metode ultrasonik. Dari hasil karakterisasi FTIR, XRD, SEM, TEM, dan Raman, terlihat bahwa masing-masing senyawa prekursor maupun nanokomposit Ti3C2Tx MXene/I-Cu nanozyme telah berhasil disintesis. Aktivitas katalitik diuji pada oksidasi p-nitrofenol. Model kinetika orde pseudo-satu menunjukkan dalam 30 menit Ti3C2Tx MXene, I-Cu nanozyme, Ti3C2Tx MXene/I-Cu nanozyme memiliki nilai konstanta laju berturut-turut 0,0019 cm-1, 0,0002 cm-1, dan 0,0005 cm-1. Sementara itu, nilai %oksidasi masing-masing katalis dalam interval waktu 30 menit sebesar -5,18%, 0,842%, 1,12%. Hal ini menyatakan bahwa ketiga jenis katalis tidak memiliki aktivitas oksidasi.

The industrial revolution has significantly advanced various sectors, but it has also led to negative consequences such as water contamination. A primary pollutant from industrial activities, with anthropogenic characteristics, is p-nitrophenol. Exposure to p-nitrophenol poses high-risk complications to living organisms. An effective method to control p-nitrophenol is through oxidation with H₂O₂, utilizing a potential catalyst material, I-Cu nanozyme. I-Cu nanozyme possesses laccase and catecholase-like activities, enabling it to oxidize pollutants through active sites. In this experiment, I-Cu nanozyme was immobilized with Ti3C2Tx to form a catalyst for p-nitrophenol oxidation. I-Cu nanozyme was synthesized via the solvothermal method, while Ti3C2Tx MXene was prepared through etching and exfoliation. The Ti3C2Tx MXene/I-Cu nanozyme nanocomposite was then assembled using ultrasonic techniques. Characterization using XRD, TEM, and Raman spectroscopy confirmed the successful synthesis of each precursor and the composite. The catalytic activity was evaluated using oxidized p-nitrophenol as a substrate. The pseudo-first-order kinetic model indicated that after 30 minutes, Ti3C2Tx MXene, I-Cu nanozyme, and Ti3C2Tx MXene/I-Cu nanozyme exhibited rate constant value of 0.0019 cm⁻¹, 0.0002 cm⁻¹, and 0.0005 cm⁻¹, respectively. The oxidation percentages of each catalyst over the 30-minute interval were -5.18%, 0.842%, and 1.12%. This shows that these three catalyst variations do not facilitate the oxidation process."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library