Ditemukan 6 dokumen yang sesuai dengan query
Hazel Raditya Mizumareru
"Pada beberapa tahun kebelakang perkembangan bidang machine learning telah mengalami kemajuan yang pesan dari berbagai domain dimana dibutuhkan sistem otomasi. Hal ini membuat model yang
advanced seperti
Deep Convolutional Neural Network dapat mencapai performa yang baik dalam melakukan klasifikasi, identifikasi objek hingga bahkan melebihi kemampuan manusia dalam beberapa domain. Salah satu aplikasi dari perkembangan ini adalah klasifikasi gambar terutama pada bidang medis misalnya pada klasifikasi paru-paru. Belakangan ini pandemi COVID-19 menjadi peristiwa yang cukup berdampak kepada dunia medis. Machine learning dapat membantu proses penanganan pandemi COVID-19 terutama dalam klasifikasi jenis penyakit pada paru-paru. Pada penelitian ini digunakan dataset hasil x-ray paru-paru COVID-19 radiography yang dibuat oleh kelompok riset dari Qatar. Pada dataset ini terdapat 4 kelas label yaitu paru-paru normal, Covid, Lung Opacity dan Viral Pneumonia yang akan diklasifikasi menggunakan model CNN berbasis
transfer learning. Model yang digunakan pada penelitian ini adalah MobileNetV2 dan EfficientNetB6. Kemudian dilakukan penanganan
imbalanced data dengan menggunakan metode
upweighting, downsampling dan
class weighting untuk mengangani dataset yang tidak rata. Didapatkan hasil klasifikasi terbaik dari model EfficientNetB6 dengan skema training 60: validasi 40 dengan akurasi 96.74%. Sedangkan untuk model MobileNetV2 didapat hasil klasifikasi terbaik dengan skema training 60: validasi 40 dengan akurasi 94.28 %.
Messages from various domains where automation systems are required have been incorporated into the machine learning field's development over the last few years. This enables sophisticated models, like Deep Convolutional Neural Networks, to perform well in classifying and object identification—even outperforming human capabilities in some cases. One use for this technology is image classification, particularly in the medical industry where the classification of the lungs is one example. A significant impact on the medical community has recently been caused by the COVID-19 pandemic. Machine learning can aid in the management of the COVID-19 pandemic, particularly in the classification of different lung disease types. Four label classes—normal lungs, Covid, lung opacity, and viral pneumonia—are present in this dataset and will be identified using a transfer learning-based CNN model. MobileNetV2 and EfficientNetB6 are the models that were used in this study. The EfficientNetB6 model, which had a training scheme of 60: 40 validation and an accuracy of 96.74 percent, produced the best classification results. The best classification outcomes for the MobileNetV2 model, meanwhile, were achieved with a training scheme of 60: 40 validation and an accuracy of 94.28 percent."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Rizki Ramadhan
"Jumlah kendaraan yang digunakan manusia dalam bertransportasi di dunia semakin meningkat baik kendaraan roda empat maupun kendaraan roda dua, tidak terkecuali di Indonesia. Ini membuat semakin sulitnya pengidentifikasian pelanggaran lalu lintas yang dilakukan pengendara. Pendeteksi plat nomor otomatis merupakan suatu sistem teknologi yang memiliki kemampuan untuk mendeteksi, mengenali, dan menyimpan plat nomor kendaraan melalui kamera, pemroresan citra, dan kecerdasan buatan. Di dalam penelitian ini akan dikembangkan metode pendeteksi plat nomor menggunakan YOLOv8 dan MobileNetV2 pada framework Mediapipe yang ditanam pada sistem Android pada gawai. Plat nomor yang telah terdeteksi kamera gawai dikenali karakternya menggunakan Optical Character Reader (OCR) kemudian disalin dan dimasukkan ke situs SAMSAT setempat untuk diidentifikasi. Informasi yang tersaji pada situs SAMSAT dapat digunakan sebagai informasi untuk memvalidasi keabsahan kendaraan oleh pihak yang berwenang. Waktu inferensi yang diperlukan untuk mengidentifikasi plat nomor mencapai 350 ms detik pada gawai dengan spesifikasi Snapdragon 695 dan RAM 11 GB. Akurasi model deteksi plat kendaraan diuji dengan split test dataset yang menghasilkan akurasi sebesar 96%. Selain itu, model juga diuji dengan pengujian keandalan dengan melakukan simulasi aplikasi pada beberapa variasi kondisi seperti jenis plat, waktu pengujian, dan jarak yang menghasilkan akurasi rata-rata 81%. Implementasi sistem ini pada perangkat Android memberikan manfaat gawai yang lebih besar bagi pihak yang berkepentingan. Untuk memastikan implementasinya secara realtime, sistem harus efisien, kompleksitas komputasi yang rendah, dan skalabilitas yang tinggi.
The number of vehicles used for transportation in the world is increasing, both fourwheeled vehicles and two-wheeled vehicles, including in Indonesia. This makes it increasingly difficult to identify traffic violations committed by drivers. Automatic number plate detection is a technology that has the ability to detect, recognize and store vehicle number plates through cameras, image processing and artificial intelligence. In this research, a number plate detection method will be developed using YOLOv8 and Mediapipe which are embedded in the Android system on the device. The character of the number plate that has been detected by the device camera is identified using an Optical Character Reader (OCR), then copied and entered into the local SAMSAT site for identification. The information presented on the SAMSAT website can be used as information to validate the data of the vehicle by the authorized parties. The inference time required to identify number plates reaches 350 ms seconds on a device with Snapdragon 695 specifications and 11 GB RAM. The accuracy of the vehicle plate detection model was tested using a split test dataset which resulted in an accuracy of 96%. Apart from that, the model was also tested using reliability testing by simulating the application under several variations of conditions such as plate type, testing time and distance which resulted in an average accuracy of 81%.Implementation of this system on Android devices provides greater device benefits for interested parties. To ensure its real-time implementation, the system must be efficient, low computational complexity, and high scalability."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Noer Fitria Putra Setyono
"SIBI merupakan bahasa isyarat resmi yang digunakan di Indonesia. Penggunaan SIBI seringkali ditemukan permasalahan karena banyaknya gerakan isyarat yang harus diingat. Penelitian ini bertujuan untuk mengenali gerakan isyarat SIBI dengan cara mengekstraksi fitur tangan dan wajah yang kemudian diklasifikasikan menggunakan Bidirectional Long ShortTerm Memory (BiLSTM). Ekstraksi fitur yang digunakan dalam penelitian ini adalah Deep Convolutional Neural Network (DeepCNN) seperti ResNet50 dan MobileNetV2, di mana kedua model tersebut digunakan sebagai pembanding. Penelitian ini juga membandingkan performa dan waktu komputasi antara kedua model tersebut yang diharapkan dapat diterapkan pada smartphone nantinya, dimana model tersebut akan diimplementasikan. Hasil penelitian menunjukkan bahwa penggunaan model ResNet50-BiLSTM memiliki kinerja yang lebih baik dibandingkan dengan MobileNetV2-BiLSTM yaitu 99,89%. Namun jika akan diaplikasikan pada arsitektur mobile, MobileNetV2-BiLSTM lebih unggul karena memiliki waktu komputasi yang lebih cepat dengan performa yang tidak jauh berbeda jika dibandingkan dengan ResNet50-BiLSTM.
SIBI is a sign language that is officially used in Indonesia. The use of SIBI is often found to be a problem because of the many gestures that have to be remembered. This study aims to recognize SIBI gestures by extracting hand and facial features which are then classified using Bidirectional Long ShortTerm Memory (BiLSTM). The feature extraction used in this research is Deep Convolutional Neural Network (DeepCNN) such as ResNet50 and MobileNetV2, where both models are used as a comparison. This study also compares the performance and computational time between the two models which is expected to be applied to smartphones later, where both models can now be implemented on smartphones. The results showed that the use of ResNet50-BiLSTM model have better performance than MobileNetV2-BiLSTM which is 99.89\%. However, if it will be applied to mobile architecture, MobileNetV2-BiLSTM is superior because it has a faster computational time with a performance that is not significantly different when compared to ResNet50-BiLSTM."
Depok: Fakultas Komputer Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Moh. Faisal
"Bahasa Isyarat Indonesia (BISINDO) merupakan salah satu bahasa isyarat yang banyak digunakan kaum Tuli di Indonesia karena dianggap lebih alami sehingga lebih mudah digunakan. BISINDO digunakan kaum Tuli untuk berkomunikasi dengan orang lain dalam kegiatan sehari-harinya. Namun, pada kenyataannya, masih banyak orang yang belum mengerti bahasa isyarat. Hal tersebut menjadi kendala bagi orang Tuli untuk berkomunikasi dengan orang dengar dan sebaliknya. Perkembangan teknologi yang semakin maju memberikan suatu solusi untuk masalah tersebut. Pada penelitian ini akan dikembangkan model untuk mengenali gerakan isyarat BISINDO dengan menggunakan MobileNetV2 dan Long Short-Term Memory (LSTM). MobileNetV2 digunakan pada tahap feature extraction sedangkan LSTM digunakan pada tahap klasifikasi gerakan isyarat. Dataset yang digunakan pada penelitian ini berupa video 40 kalimat yang direkam dengan menggunakan kamera smartphone dan diperagakan oleh empat orang Tuli dari Laboratorium Riset Bahasa Isyarat FIB UI (LRBI FIB UI). Terdapat tahapan preprocessing untuk mendapatkan bagian tangan dan wajah yang merupakan fitur penting untuk membedakan gerakan isyarat. Penelitian ini menghasilkan model LSTM 1-layer bidirectional sebagai model terbaik dengan akurasi tertinggi sebesar 91,53%.
Indonesian Sign Language (BISINDO) is a sign language that is widely used by deaf people in Indonesia because it is a natural language and therefore it is easier to use. BISINDO is used by deaf people to communicate in their daily activities. However, in reality, there are many people who do not understand sign language. This becomes a problem for deaf people to communicate with hearing people and vice versa. Nowadays, the development of technology is more advanced give a solution to this problem. In this research, a model will be developed to recognize BISINDO gestures using MobileNetV2 and Long Short-Term Memory (LSTM). MobileNetV2 will be used in a feature extraction stage while LSTM will be used in the gesture classification stage. The dataset used in this study is a video recording of 40 sentences recorded using a smartphone camera and it was demonstrated by four deaf people from the research laboratory of sign language FIB UI (LRBI FIB UI). There is a preprocessing stage to get the hand and facial parts which are important features for distinguishing the gesture of sign language. Then, the result of this study is a model LSTM 1-Layer Bidirectional as the best model with the highest accuracy is 91,53%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ananda Tjakra Adisurja
"Kemajuan teknologi kini mengizinkan manusia untuk mengambil gambar citra termal yang memiliki kemampuan untuk menerima citra termal tanpa perlu adanya cahaya tampak. Hal ini membuat manusia dapat melihat dalam gelap akibat pancaran benda-hitam dari benda-benda yang menghasilkan panas. Dengan menggunakan algoritma Single Shot Detector, dapat dilakukan deteksi objek berupa manusia untuk membedakan laki-laki dengan perempuan. Model SSD dengan berbagai arsitektur seperti MobileNetV1, MobileNetV2 dan ResNet50 digunakan untuk menguji kemampuan deteksi objek kamera termal terhadap kemampuan deteksi objek pada kamera berwarna. Arsitektur model kamera termal dengan nilai mAP dan AR@1 dengan data pengujian terbaik adalah ResNet50 dan untuk arsitektur model deteksi objek kamera berwarna terbaik adalah MobileNet V1 .Kamera termal unggul dalam melakukan deteksi di seluruh rentang kondisi pencahayaan namun kamera berwarna hanya mampu melakukan deteksi di atas intensitas cahaya 42 lux.Kamera berwarna unggul dalam melakukan deteksi dengan nilai inferensi terbaik berada di antara 3 – 15m sedangkan kamera termal memiliki jarak efektif melakukan inferensi di antara 3 – 10m.
The advancement in imaging technology has come to an era where cameras are now able to capture infrared images. This advancement causes cameras to be able to capture without any visible light spectrum and receive image under the dark due to the black-body radiation phenomena. In conjunction with Single Shot Detector algorithm, it is now possible to detect and clasify thermal images into classes to recognize the gender of a human being as a male or female. The architecture used in the models are MobileNetV1, MobileNetV2 and ResNet50 which are then trained using a custom dataset of thermal images and colour images. The testing dataset shows that ResNet50 is the model with the highest mAP and AR@1 score for thermal model and MobileNetV1 is the model with the highest mAP and AR@1 score for colour model. The other test with varying object distance and varying light instensity shows that thermal image detection models are able to detect object at all lighting condition while the colour image models are only able to detect object above 42 lux. Colour detection models are better at detecting objects at a longer distance from the camera from a distance of 3 – 15 m while the termal models are able to do inference effectively from a distance of 3 – 10 m."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ahmad Arsy
"Indonesia memproduksi lebih dari 700 ribu ton biji kopi, menjadikannya negara keempat terbesar penghasil kopi di dunia. Di dalam biji kopi sendiri, terkandung berbagai zat kimia yang bermanfaat bagi kesehatan seperti kafein, chlorogenic acid (CA), dan trigonelline. Kadar masing-masing zat kimia ini bergantung pada varietas biji kopi serta tingkat penyangraiannya. Sebuah metode terbaru untuk meninjau sifat dari suatu biji kopi secara efisien dan non-destruktif adalah menggunakan Convolutional Neural Network (CNN), yaitu metode pembelajaran mesin (Machine learning) yang meninjau citra dari target yang diberikan. Jenis citra yang diberikan pada suatu model CNN dapat berupa citra multispektral yang terdiri dari banyak panjang gelombang. Citra semacam ini memiliki lebih banyak informasi karena jumlah pita gelombang yang lebih banyak, serta terdapat panjang gelombang yang tidak kasat mata. Penelitian ini bertujuan untuk merancang dan membangun sistem klasifikasi varietas dan tingkat penyangraian biji kopi berbasis citra multispektral dengan menggunakan pemodelan Convolutional Neural Network dengan input citra multispektral dan output majemuk. Citra multispektral yang dipakai menggunakan terdiri atas citra RGB (Red, Green, Blue), dan OCN (Orange, Cyan, NIR). Hasil akurasi pengujian tertinggi dicapai menggunakan arsitektur SqueezeNet, input citra RGB sajam dengan akurasi 95,49% untuk klasifikasi varietas, dan 99,02% untuk tingkat penyangraian. Melalui penelitian ini, perancangan sistem multi output berbasis citra multispektral mampu mengklasifikasikan tingkat penyangraian dan varietas secara bersamaan.
Indonesia produces more than 700 thousand tons of coffee beans, making it the fourth largest coffee producing country in the world. Coffee beans themselves contain various chemicals that are beneficial for health, such as caffeine, chlorogenic acid (CA), and trigonelline. The levels of each of these chemicals depend on the coffee bean variety and the level of roasting. A new method for reviewing the properties of a coffee bean efficiently and non-destructively is using a Convolutional Neural Network (CNN), which is a machine learning method that reviews the image of a given target. The type of image given to a CNN model can be a multispectral image consisting of many wavelengths. This kind of image has more information because there are more wave bands, and there are wavelengths that are not visible to the eye. This research aims to design and build a classification system of varieties and roasting levels of multispectral image-based coffee beans using Convolutional Neural Network modeling with multispectral image input and compound output. The multispectral images used consist of RGB (Red, Green, Blue), and OCN (Orange, Cyan, NIR) images. The highest test accuracy results were achieved using SqueezeNet architecture, input RGB sharp image with 95.49% accuracy for variety classification, and 99.02% for roasting rate. Through this research, the design of a multispectral image-based multi-output system is able to classify roasting level and variety simultaneously."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library