Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 52 dokumen yang sesuai dengan query
cover
cover
Sandi Sufiandi
"Tesis ini akan membahas karakterisasi absorbansi darah pada rentang 190 sampai dengan 1100 nm per 10 nm pada pasien demam dengue dengan menggunakan spektrofotometer UV-Vis. Data numerik yang diperoleh kemudian dilakukan pengenalan pola karakteristiknya menggunakan kecerdasan buatan. Hasil yang diperoleh menggambarkan karakteristik yang berbeda antara rentang 190 s/d 380 dan 610 s/d 1100 nm dengan 400 s/d 600 nm. Data numerik absorbansi 400 s/d 600 nm diproses dengan metoda self organizing maps menunjukan kestabilan hasil walaupun tingkat pengenalannya masih rendah.

This thesis is describing characterization of blood absorbance in range of 190 through 1100 nm per 10 nm of dengue fever patient using UV-Vis spectrophotometer. Collected numerical data is processed by pattern recognition using artificial intelligence. Result shown that characteristics between 190-380 nm and 610?1100 nm differ from 400 nm?600 nm. 400 - 600 nm absorbance numerical data processed using self organizing maps showing output of recognition stability, even degree of recognition was still low."
Depok: Program Pascasarjana Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Amir Murtako
"Pada kesempatan ini akan dievaluasi metode partisi fuzzy dalam menyelesaikan suatu permasalahan nonlinier dalam hal ini permasalahan klasifikasi. Metode ini mempartisi input space ke dalam bin-bin dan membuat aturan fuzzy dari tiap bin. Keseluruhan aturan fuzzy yang dihasilkan membentuk suatu sistem berbasis aturan fuzzy (sistem fuzzy) yang memodelkan sistem nonlinier dari permasalahan yang diberikan. Metode partisi fuzzy diperkenalkan dan digunakan untuk prediksi unjuk kerja pada masalah kredit industri finansial oleh Yinghua Lin. Pada makalah ini metode partisi fuzzy digunakan untuk menyelesaikan masalah klasifikasi dengan data input dan data output 'Wine Recognition Data'. Metode ini memberikan hasil yang cukup baik terutama ketika dilakukan penambahan kemungkinan lokasi pemartisian, dari maksimum pengenalan 91,67% (tiga lokasi pemartisian) menjadi maksimum 94,44% (lima lokasi pemartisan). Dalam percobaan ini juga diterapkan preprocessing PCA yang mentransformasikan data input ke dalam ruang eigen. Peningkatan yang diperoleh cukup tinggi hingga mencapai tingkat pengenalan 97,22%. Kata kuci: paritisi fuzzy, sistem fuzzy, klasifikasi, PCA."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2006
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hendrik Seputra
"Penelitian ini dilakukan untuk menguji kelayakan penerapan teknik pencitraan hiperspektral di wilayah variabel 400-1000 nm untuk mengetahui kandungan formalin. Sistem pencitraan hiperspektral terdiri dari kamera hiperspektral, slider, motor slider, dua sumber lampu halogen dan komputer yang digunakan untuk proses akuisisi data dan pengolahan data. Citra hiperspektral merupakan sebuah hypercube yang berisi informasi spasial dan spektral. ROI digunakan untuk memilih area sampel yang homogen. Data ROI diekstraksi dengan merata-ratakan data spasialnya, sehingga hanya diperoleh data spektral. Metode principle component analysis PCA digunakan untuk mereduksi dimensi data data spektral dan memilih fitur yang akan digunakan sebagai masukan dalam klasifikasi. Linear discriminant analysis LDA digunakan sebagai model untuk mengklasifikasikan kelas yang berbeda, yaitu formalin dan nonformalin. Model PCA regresi digunakan untuk menguji akurasi nilai prediksi terhadap nilai pengujian laboratorium. Dari hasil percobaan pada pengamatan hari pertama, kedua dan ketiga menunjukkan keefektifan model LDA dalam memisahkan sampel tahu berformalin dan tahu tanpa formalin dengan akurasi diatas 86,81 , 93,06 , dan 100 . Serta dari hasi regresi linier pada pengamatan hari pertama, kedua dan ketiga diperoleh koefisien korelasi R2 sebesar 0,98, 0,99 dan 0,99 serta nilai RMSE sebesar 1,83, 1,40 dan 1,27. Hasil ini menunjukkan bahwa pencitraan hiperspektral merupakan pendekatan yang menjanjikan untuk memprediksi kandungan formalin yang dengan cepat dan akurat.

This study was carried out to examine the feasibility of applying hiperspektral imaging technique in the spectral region 400 1000 nm for classification formaldehyde tofu. The system hardware of hiperspektral imaging consists of hiperspektral camera with spectral region 400 1000 nm, workbench, motor slider, two halogen lamp source and personal computer used for the data acquisition process and data processing. Hyperspectral image is a hypercube that contains of spatial and spectral information. ROI is used to select a homogeneous sample area. ROI data is extracted by averaging its spatial data, so that only spectral data are obtained. The principle component analysis PCA method is used to reduce dimensions of the data and select the features to be used as input in the classification. The linear discriminant analysis LDA is used as a model to classify to distinct classes, that is formaldehyde tofu and without formaldehyde tofu. PCA Regression model is used to test the accuracy prediction values against the value of laboratory testing. Result from the experiment on the first, second and third day observations showed the effectiveness of the LDA model in separating the informal sample of formalin and tofu without formalin with an accuracy above 86.81 , 93.06 , and 100 . As well as from the results of linear regression on first, second and third observations obtained correlation coefficient R2 of 0.98, 0.99 and 0.99 and RMSE of 1.83, 1.40 and 1.27. These results suggest that hyperspectral imaging is a promising approach to predicting rapidly and accurately formaldehyde content."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Annisa
"Latar belakang: Nyeri pascabedah ortopedi ekstremitas bawah masih menjadi masalah yang berkaitan dengan risiko pascabedah dan lama perawatan di rumah sakit. PCA intravena morfin dan oxycodone masih belum dikaji lebih jauh sebagai analgesia pascabedah ortopedi ekstremitas bawah.
Metode: Penelitian ini merupakan uji klinik acak tersamar ganda untuk menilai efektivitas PCA intravena morfin dengan oxycodone untuk analgesia pascabedah ortopedi ekstremitas bawah. Subjek penelitian berjumlah 50 orang yang didapatkan dengan consecutive sampling selama Januari-April 2019. Pasien dibagi menjadi 2 kelompok, dirandomisasi menjadi kelompok morfin dan kelompok oxycodone. Efektivitas dinilai dengan banyaknya konsumsi opioid dalam 24 jam pascabedah dan efek samping antara 2 kelompok. Penilaian derajat nyeri diam dan bergerak pada jam ke-0, 6, 12, dan 24 dengan menggunakan Visual Analogue Score (VAS) dan kepuasan pasien pada penggunaan PCA juga dinilai untuk komponen penilaian tambahan. Hasil dianalisis dengan SPSS.
Hasil: Seluruh subjek penelitian menyelesaikan penelitian dan tidak didapatkan perbedaan karakteristik yang signifikan antara 2 kelompok. Banyaknya konsumsi opioid dalam 24 jam pertama pascabedah antara 2 kelompok (p 0,574) dan kejadian efek samping antara 2 kelompok tidak berbeda. Derajat nyeri istirahat dan bergerak juga tidak didapatkan hasil yang berbeda bermakna (p 0,109 ; 0,163). Kepuasan pasien pada penggunaan PCA juga tidak berbeda bermakna, namun secara umum pasien puas dengan penggunaan PCA, dan kepuasan pasien pada PCA oxycodone (76%) lebih banyak dibanding PCA morfin (52%)
Simpulan: PCA intravena oxycodone tidak lebih efektif dibandingkan PCA intravena morfin untuk analgesia pascabedah ortopedi ekstremitas bawah pada penelitian ini. Pasien yang setuju dengan penggunaan PCA sebanyak 30 subjek, tidak ada perbedaan signifikan antara 2 kelompok.

Background: Postoperative pain after lower extremity orthopedic surgery may increase morbidity after surgery and prolong the length of hospitalization. The study investigating effectiveness intravenous PCA morphine and oxycodone has not been extensively studied for managing pain after lower extremity orthopedic surgery.
Methods: This study is a double-blind randomized study clinical trial to evaluate effectiveness intravenous PCA morphine and oxycodone for post-operative analgesia after lower extremity orthopedic surgery. Total of 50 subjects were enrolled with consecutive sampling within January-April 2019. Subjects were randomly allocated into 2 groups, received intravenous PCA morphine or intravenous PCA oxycodone. Post-operative opioid consumption in 24 hours and side effects were considered the primary efficacy variable. Pain scores were measured using Visual Analogue Score (VAS) at time 0, 6, 12, and 24 after surgery. Patient satisfaction in both groups was also evaluated. Data was analyzed statistically using SPSS.
Results: All the subjects done this study. There were no differences in the characteristics of both groups. Opioid consumption between two groups no significantly different (p 0,574) and incidence of side effects between two groups were similar. Pain scores during rest and move also no significant differences (p 0,109 ; 0,163). Patient satisfaction no significant difference, but almost patient satisfied with using PCA, while group oxycodone (76%) higher than group morphine (52%).
Conclusion: Intravenous PCA oxycodone had no more effective than intravenous PCA morphine for post-operative analgesia after lower extremity orthopedic surgery in this study. Patient satisfaction was higher in group oxycodone than in group morphine.
"
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2019
SP-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Dias Rima Sutiono
"Penelitian sebelumnya menunjukkan Multiwavelength UV-Vis spektrofotometer pada darah terinfeksi virus membuat perubahan optik dari darah dan mempunyai karakter pola-pola tertentu serta dapat dikenali dengan jaringan sataf tiruan Backpropagation dan algoritma PCA. Penyakit infeksi endemik di Indonesia salah satunya disebabkan oleh virus dengue. Penelitian ini, dilakukan pengukuran absorbansi optik darah Demam Dengue (DD), non DD dan orang sehat dengan spektrofotometer UV-Vis 190-1100 nm. Rentang 400-600 nm dengan 21 data input memperlihatkan pola-pola sangat berbeda dl."baDdingkan 190-400 dan 400-1100 nm. Kemudian spektmm absorbansi darah dianalisa menggunakan BP dengan hidden layer 20 nilai k:eberhasilan mengenali pola DD, non DD dan orang sebat mencapii 27%, l'edangkan PCA + BP 20 dan 10 dimensi dengan hidden layer 25 nilai keberhasilannya mencapai 60"10.

Previous studies showed that multiwavelength uv-vis spectrophotometer in blood virus infection can make changes in optical properties and bas character with certain patterns. These patterns are recognized by artificial neural network Backpropagation and algorithm PCA. One of endemic iofectious disease in Indonesia is caused by dengue viral iofection. In this studies, measurement of the optic absorbance blood from DF, non DF and healthy person by spectrophotometer UV-Vis in 190-1100 mn. Range 400-600 nm with 21 datas input show patterns very differ between DF, non DF and health person compared 190-400 and 400-llOOnm. Then blood absorbance spectrum pattem analyzed using BP with layer hidden 20 efficacy value recognize pattern DF, non DF and healthy people reach 27%, while PCA + BP with 20 and 10 dimension having layer hidden 25 efficacy value reaching 60".4."
Depok: Program Pascasarjana Universitas Indonesia, 2009
T29166
UI - Tesis Open  Universitas Indonesia Library
cover
Syafrida Manuwoto
"This study was aimed to determine maturity and ripeness of sawo (Achras sapota L.) based on near infrared (NIR) spectroscopy using artificial neural network. The NIR system was developed and applied to 120 sawo samples at the wavelength range from 1400 - 1995 nm, the data was recorded in 5 nm interval. The samples were separated into three group, i.e. mature, ripe, and over ripe based on their harvest time. The principal component analysis (PCA) was used to reduce dimension of NIR reflectance data that has been smoothed with moving average method. The 5, 10, 15 principal component was fed into the neural network model as input and the level of maturity and ripeness as output. The result recommended the use of 10 and 15 principal component as input on various nodes in hidden layer that would provided the highest accurateness of 100% in classifying the sawo based on its maturity and ripeness"
Bogor: Program Pascasarjana Universitas Indonesia, 2002
630 FPJ
Majalah, Jurnal, Buletin  Universitas Indonesia Library
cover
Iqbal Fachrizal
"ABSTRAK
Secara visual, sulit untuk membedakan antara perokok dan bukan perokok bahkan untuk dokter atau dokter gigi yang berpengalaman. Salah satu cara yang paling obyektif untuk mengenali lidah perokok adalah dengan menggunakan alat seperti kamera. Penelitian yang relevan menemukan bahwa kelainan pada permukaan lidah dapat ditangkap oleh kamera HS pada rentang spektrum 650 - 900 nm. Sistem yang diusulkan terdiri dari dua bagian, perangkat keras dan perangkat lunak. Perangkat keras terdiri dari rangka aluminium, slider, sebuah sumber cahaya halogen dan kamera HS dengan rentang spektral antara 400-1000 nm yang terhubung ke komputer. Sistem dilengkapi oleh perangkat lunak pengolah citra hiperspektral yang dirancang untuk mendeteksi lidah perokok. Nilai reflektansi permukaan lidah diekstraksi dari citra lidah responden yang sebelumnya dikoreksi dengan menggunakan referensi citra hiperspektral gelap dan terang. Merata-ratakan data reflektansi spektral disetiap region lidah dilakukan untuk mengubah fitur yang ada menjadi ruang dimensi yang lebih kecil. Principal Component Analysis PCA digunakan untuk menghitung dan memilih subset fitur yang akan digunakan sebagai input oleh pengklasifikasi. Support vector machine SVM digunakan sebagai model klasifikasi citra karena kinerjanya sangat baik untuk memilih separator hyperplane terbaik di antara dua kelas yang berbeda. Sejumlah sampel citra lidah diakuisisi, diolah dan diklasifikasikan sebagai lidah perokok dan bukan perokok oleh sebuah sistem pengukuran hiperspektral. Evaluasi hasil sistem diperiksa menggunkan confusion matriks dengan menjadikan false positive rate FPR , false negative rate FNR , sensitivity dan specificity sebagai parameter kehandalan sistem. Validasi terhadap hasil pengukuran dilakukan menggunakan metode k-fold cross validation dengan rata-rata error klasifikasi SVM sebagai parameter akurasi sistem prediksi. Sistem deteksi perokok untuk mengidentifikasi smoker rsquo;s melanosis ini berhasil mengklasifikasi lidah perokok dan bukan perokok dengan akurasi yang baik.Kata kunci: Hiperspektral, SVM, Fingerprint, Lidah, Perokok.

ABSTRACT
Visually, it is difficult to diffrentiate between smoker and non smoker tongue even for an experienced doctor or dentist. One of the most objective way to acknowledge the smoker tongue is by using tools such as camera. The relevant research found that lession on tongue surface possible to be captured by hiperspektral camera in spectral range 650 ndash 900 nm. The proposed system contains of two parts, hardware and software. The hardware consists of workbench, slider, a halogen light source and hyperspectral camera with spectral range between 400 1000 nm connected to personal computer. The system complemented with hiperspektral image processing software built up especially to analyse the smoker tongue. The reflectance values of tongue surface was extracted from respondent tongue image that previously corrected using white and dark hiperspektral image references. Averaging all of spectral data have been done to transform the existing features into a lower dimensional space. The principal component analysis PCA was used to compute and select the features subset which will be used as an input by the classifier. The support vector machine SVM classifier is used as image classification model since it perform excellent to choose the best hyperplane separator between two difference classes. A number of samples of the tongue image were acquired, processed and classified as smokers and non smokers tongue by a hyperspectral measurement system. The evaluation of system result is checked using confusion matrix by making false positive rate FPR , false negative rate FNR , sensitivity and specificity as system reliability parameters. Validation of the measurement results was done using k fold cross validation method with average error classification SVM as parameter of system prediction accuration. Smoker detection system to identify smoker rsquo s melanosis is successfully classify the tongue of smokers and non smokers with good accuracy.Keywords Hiperspektral, Reflectance, Smoker, Tongue, Diagnosis, SVM, PCA "
2017
T49745
UI - Tesis Membership  Universitas Indonesia Library
cover
Nabila Ramadhani
"Corona Virus Disease 2019 (COVID-19) adalah penyakit yang menyerang tubuh manusia melalui virus Severe Acute Respiratory atau SARS-CoV-2. Munculnya wabah COVID-19 menimbulkan setidaknya 16,6 juta penduduk di dunia meninggal dunia serta tidak sedikit dari penderitanya mengidap Community Acquired Pneumonia (CAP). CAP adalah infeksi akut parenkim paru pada orang yang telah mendapatkan infeksi di masyarakat. Menurut World Health Organization (WHO), pneumonia menjadi penyebab utama kematian nomor tiga di negara miskin dan berkembang. Dengan adanya pendeteksian serta diagnosis lebih dini, pengidap CAP akibat terpapar oleh virus COVID-19 ini dapat ditangani lebih cepat sebelum menyebar luas. Oleh karena itu, analisis gambar medis sangat penting dalam upaya pengobatan CAP sedini mungkin. Adanya pengembangan teknologi deep learning dan computer vision dapat membantu dokter dalam melakukan pendeteksian lebih cepat serta akurat. Maka dari itu, penelitian ini mengusulkan model Convolutional Neural Network (CNN) dengan arsitektur ensemble model Xception, InceptionV3, NASNet Large, dan Inception Resnet-V2 dengan menggunakan metode pre-processing Principal Component Analysis (PCA) dalam melakukan pendeteksian COVID-19 tiga kelas pada gambar chest xray. Penggunaan metode PCA pada data pre-processing dapat membantu mengembangkan model yang lebih efisien serta akurat. Para peneliti telah mencoba pemrosesan gambar baik menggunakan gambar rontgen dada dan juga Computerized Tomography (CT scan) khususnya CNN. Penelitian sebelumnya telah membuat model CNN dengan arsitektur ensemble model yang terdiri dari Xception, Inception-V3, NASNet Large, dan Inception Resnet-V2 berbasis ensemble model. Namun, hasil akurasi dalam pendeteksiannya masih belum optimal. Oleh karena itu, penelitian ini mengusulkan penggunaan metode PCA untuk meningkatkan akurasi pendeteksian menjadi 88,95%. Akurasi pendeteksian meningkat sebesar 3,14% dari penelitian sebelumnya.

Corona Virus Disease 2019 (COVID-19) is a disease that attacks the human body through the SARS-CoV-2 virus. The emergence of the COVID-19 outbreak has caused at least 16.6 million people worldwide to die, and many of them suffer from Community Acquired Pneumonia (CAP). CAP is an acute lung parenchyma infection in people who have been infected in the community. According to World Health Organization (WHO), pneumonia is the third leading cause of death in poor and developing countries. With earlier detection and diagnosis, CAP sufferers due to exposure to the COVID-19 virus can be treated more quickly before it spreads widely. Therefore, medical image analysis is crucial in the effort to treat CAP as early as possible. The development of deep learning and computer vision technology can help doctors to perform faster and more accurate detection. Hence, this research proposes a Convolutional Neural Network (CNN) model with ensemble architectures of Xception, InceptionV3, NASNet Large, and Inception Resnet-V2, using Principal Component Analysis (PCA) pre-processing method to perform three-class COVID-19 detection in chest x-ray images. The use of the PCA method in pre-processing data can help develop a more efficient and accurate model. Researchers have tried image processing using both chest X-ray images and also Computerized Tomography (CT scan), especially CNN. Previous research has created a CNN model with an ensemble model architecture consisting of Xception, Inception-V3, NASNet Large, and Inception Resnet-V2 based on the ensemble model. However, the results of the accuracy in the detection are still not optimal. Therefore, this study proposes the use of the PCA method to increase the detection accuracy to 88.95%. Detection accuracy increased by 3.14% from previous studies."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6   >>