Ditemukan 3 dokumen yang sesuai dengan query
Bagus P Adiwidodo
2008
TA1691
UI - Tugas Akhir Universitas Indonesia Library
Tiva Rahmita
"Proses Thermal Mixing adalah jenis dari proses pencampuran yang penting di berbagai industri, Proses ini bekerja dengan mengendalikan flow air yang masuk yang memiliki temperatur yang berbeda untuk menghasilkan temperatur campuran yang diinginkan. Dalam penelitian ini dilakukan simulasi pengendalian temperatur air pada proses pencampuran dalam suatu tangki menggunakan Matlab. Tujuan dari penelitian ini adalah menjaga temperatur air di set point dengan mengendalikan flow air dingin yang masuk ke tangki pencampuran sedangkan flow air panas dan flow keluar dijaga konstan. Sistem dikendalikan menggunakan pengendali Reinforcement Learning (RL) dengan menerapkan algoritma Proximal Policy Optimization (PPO). Algoritma RL melakukan serangkaian tahapan training kepada agent untuk menghasilkan action yang sesuai berupa bukaan control valve. Pada proses training, sistem akan diberikan perubahan set point. Performa dari pengendali RL akan dilihat dari parameter-parameter seperti overshoot, rise time, dan settling time sebagai data kualitatif. Hasilnya secara keseluruhan menunjukkan bahwa pengendali RL dapat melakukan proses belajar dalam pengujian perubahan set point. Hal ini dapat dilihat dari grafik nilai process variable yang mendekati nilai set point (SP) dengan nilai overshoot terbesar saat SP 45 ℃ dan 60 ℃ yaitu sebesar 0,003% dan nilai steady state error terbesar senilai 0,3 ℃. Jika dibandingkan dengan pengendali PID yang diterapkan dengan menggunakan closed-loop PID autotuner, pengendalian yang dilakukan oleh agent PPO lebih baik dibandingkan PID. Hal ini didukung oleh data kecepatan respons yang menunjukkan nilai rise time dan settling time pada pengendali RL di semua nilai SP lebih kecil dibandingkan dengan PID.
Thermal Mixing Process is a type of mixing process that is important in various industries, This process works by controlling the incoming water flow which has different temperatures to produce the desired temperature mixture. In this study, a simulation of water temperature control in the mixing process in a tank was carried out using Matlab. The purpose of this research is to maintain the air temperature at the set point by controlling the flow of cold air entering the mixing tank while the hot air flow and flow are kept constant. The control system uses a Reinforcement Learning (RL) controller by applying the Proximal Policy Optimization (PPO) algorithm. The RL algorithm performs training stages for agents to produce actions in the form of control valve openings. In the training process, the system will be given a set point change. The performance of the RL controller will be seen from parameters such as overshoot, rise time, and settling time as qualitative data. The overall result shows that the RL controller can carry out the learning process in testing set point changes. This can be seen from the graph of the value of the process variable which is close to the set point (SP) value with the largest overshoot value at SP 45 and 60 which is 0.003% and the largest steady state error value is 0.3. When compared with PID control applied using a closed loop PID autotuner, the control performed by PPO agents is better than PID. This is supported by the data rate response which shows that the rise time and settling time values for the RL controller in all SP values are smaller than the PID."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Early Radovan
"Penelitian ini menyimulasikan sistem pengendalian temperatur dan ketinggian air pada sistem pengendali MIMO, yang bekerja dengan cara mengendalikan debit air dingin dan air panas untuk menghasilkan temperatur dan ketinggian air yang diinginkan. Simulasi ini dilakukan dengan menggunakan pengendali Reinforcement Learning dengan algoritma Proximal Policy Optimization (PPO) pada Simulink MATLAB. Tujuan dari penelitian ini, sistem dapat menjaga temperatur campuran dan ketinggian air yang terukur agar tetap berada di daerah set point yang ditentukan. Hasil training pengendali PPO diuji dengan melakukan perubahan set point, baik penambahan nilai ataupun pengurangan nilai set point. Pada penelitian ini diasumsikan bahwa proses pencampuran temperatur terdistribusi secara sempurna dan tangki tidak menyerap kalor. Penelitian ini memiliki batasan dimana temperatur air dingin 25℃ dan air panas 90℃ serta ketinggian maksimum tangki sebesar 7,5 dm. Kemampuan agent PPO dilihat dari beberapa parameter seperti overshoot, settling time, rise time, dan error steady state sebagai data kualitatif. Berdasarkan hasil simulasi, secara keseluruhan agent PPO meiliki hasil settling time dan rise time yang berbanding lurus dengan banyaknya perubahan set point. Nilai error steady state tertinggi sebesar 0.98%, terjadi pada pengendalian ketinggian air. Sedangkan nilai overshoot tertinggi sebesar 1,02% dan terjadi pada pengendalian ketinggian air juga.
This research simulates water level and temperature control system on MIMO control system, which works by controlling the flow of cold water and hot water to produce the desired temperature and water level. This simulation is carried out using Reinforcement Learning with Proximal Policy Optimization algorithm on Simulink MATLAB. The purpose of this research, the system can maintain measured temperature of mixture and water level in order to remain in the set point area. The results training of the PPO controller set point, either adding or reducing the set point. In this study, it is assumed that the temperature mixing process is perfectly distributed and the tank does not absorb heat. This research has a limit where the temperature of cold water is 25 and hot water is 90, and the maximum height of the tank is 7.5 dm. The ability agent of the PPO can be seen from overshoot, settling time, rise time, and steady state error as qualitative data. Based on the result of simulation, overall the agent PPO has settling time and rise time that is directly proportional to the number of changes at set point. The highest value of steady state error is 0.98%, occurred in controlling water level. While the highest value of overshoot is 1.02% and occurs in controlling water level as well."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library