Ditemukan 6 dokumen yang sesuai dengan query
Hanif Furqon Hidayat
"Biomassa merupakan salah satu potensi energi alternatif untuk mengurangi ketergantungan penggunaan energi fosil. Indonesia memiliki potensi energi biomassa sebesar 49.810 MW yang berasal dari limbah dan tanaman. Pemanfaatan energi tersebut dapat dilakukan melalui proses gasifikasi yang mengubah biomassa menjadi gas sintetik. Salah satu metode untuk memodelkan proses tersebut adalah dengan menggunakan kecerdasan buatan atau artificial intelligence (AI). Studi literatur yang dilakukan menunjukkan bahwa metode artificial neural network (ANN) adalah pendekatan AI yang sering dipakai untuk melakukan pemodelan proses gasifikasi. Namun, ANN memiliki beberapa kekurangan dalam pemodelan dinamis yang kemudian disempurnakan melalui salah satu pengembangannya yang dinamakan recurrent neural network (RNN) yang mampu memodelkan variabel dependen terhadap waktu. Kesimpulan dari penelitian ini menyarankan agar pengembangan RNN dapat dijadikan acuan untuk membuat sistem kontrol pintar pada prototipe gasifier yang akan datang.
Biomass is one of the alternative energy sources to reduce the usage of fossil energy. The potential of biomass energy in Indonesia reaches 49,810 MW, which comes from organic wastes and plants. Gasification is a process to convert biomass to synthetic gas, which is one of the utilizations of biomass energy. Artificial Intelligence (AI) implemented to model the complex process of gasification. Artificial Neural Network (ANN) is a common approach in AI to model the process in the gasifier. Yet, ANN is still inferior in modeling dynamic process that leads to an improvement of ANN called recurrent neural network (RNN). The result of this study suggests that RNN could be the foundation for the development of smart control for the next prototypes."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Mufiedah
"Penelitian mengenai klasifikasi emosi manusia sudah berlangsung lama. Pada umumnya yang dikembangkan adalah algoritma pengklasifikasiannya dengan menggunakan dataset EEG laboratory-grade yang sudah tersedia secara bebas. Penelitian ini bertujuan membuat dataset klasifikasi emosi manusia berbasis peranngkat EEG komersil. Responden direkrut secara online dan yang memenuhi kriteria diminta untuk menonton 6 video stimuli emosi sambil direkam aktivitas kelistrikan otaknya menggunakan perangkat EEG komersil. Tiap video stimuli diperuntukkan untuk memancing emosi yang berbeda, yaknik emosi sedih, takut, jijik, marah, tenang, dan senang. Responden juga diminta unutk mengisi kuesioner untuk tiap video stimuli yang ditonton. Dari 27 responden yang direkam data EEG-nya, hasil rekam dari 3 responden harus dieliminasi karena kualitas hasil rekam yang buruk. Hasil analisa kuesioner menunjukkan bahwa sebagian besar video stimuli sudah berhasil memancing emosi responden sesuai dengan tujuannya. Sedangkan hasil rekam signal EEG dibuat dataset untuk melatih algoritma Deep Learning model Recurrent Neural Network (RNN) untuk klasifikasi emosi manusia. Setelah melewati 16 epoch dan tidak ada perbaikan sampai epoch ke-46, nilai akurasi yang dicapai adalah sebesar 33%.
The majority of studies on the classification of human emotions have relied on the analysis of pre-existing datasets. We generated a dataset using consumer-grade EEG devices, which could be a big step forward for EEG research. Respondents were recruited online based on specific criteria and asked to watch a series of six videos while recording their brain's electrical activity using an EEG device and asked to complete a questionnaire for each video they watched. Out of the 27 respondents whose EEG data were recorded, the recordings from 3 respondents had to be eliminated due to the poor quality of the recordings. The results of the questionnaire analysis show that most of the video stimuli have succeeded in evoking the intended respondents’ emotions. Meanwhile, the EEG signal recording results are made into a dataset to train the Deep Learning algorithm using Recurrent Neural Network (RNN) method for the classification of human emotions. After passing 16 epochs and no improvement until the 46th epoch, the accuracy value achieved is 33%."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Jeremy Filbert Baskoro
"Perkembangan dari variasi modulasi menjadi semakin maju dan kompleks, terutama pada kondisi signal-to-noise ratio (SNR) rendah, sehingga dibutuhkan algoritma klasifikasi secara otomatis yang dapat diandalkan. Pada penelitian ini, penulis memodelkan sebuah arsitektur deep learning baru yang terdiri dari convolutional neural network (CNN) untuk mengekstrak karakteristik spatial, recurrent neural network (RNN) untuk mengekstrak karakteristik temporal, dan dense neural network (DNN) untuk mengekstrak fitur untuk diklasifikasikan pada kondisi SNR rendah. Model yang ditawarkan mengimplementasikan input multi-channel untuk mengekstrak sinyal termodulasi in-phase dan quadrature, serta menggunakan urutan RNN long-short term memory dan gated recurrent unit (LSTM-GRU) untuk meningkatkan keakuratan klasifikasi. Dari eksperimen yang dilakukan, model yang diusulkan memiliki keakuratan yang lebih baik pada modulasi QAM16, QAM64, dan QPSK dibandingkan dengan model state-of-the-art yang lain dengan rata-rata akurasi yang didapatkan adalah sebesar 61.46% pada SNR rendah menggunakan dataset RadioML 2016.10A.
The development of modulation variation is more advanced and more complex, especially on low signal-to-noise ratio (SNR) condition, resulting a reliable automatic modulation classification algorithm is required. In this research, we introduced a deep learning architecture consisting of convolutional neural network (CNN) to extract spatial characteristics, recurrent neural network (RNN) to extract temporal characteristics, and dense neural network (DNN) to extract feature for low SNR condition recognition. The proposed model implements multi-channel input of in-phase and quadrature modulated signal along with RNN sequence of long-short term memory and gated recurrent unit (LSTM-GRU) to improve classification accuracy. From the set experiment, the proposed model has better accuracy on 16-QAM, 64-QAM, and QPSK modulation in compare with other state-of-the-art models and obtains 61.46% average accuracy on low SNR using RadioML2016.10A dataset."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Hutagalung, Dwight J.O.
"Penyakit kardiovaskular, khususnya aritmia, merupakan salah satu penyebab utama kematian di dunia. Aritmia terjadi akibat gangguan irama jantung yang dapat dideteksi menggunakan Elektrokardiogram (EKG), yang dideteksi dengan menganalisa perubahan atau kejanggalan dari sinyal EKG yang dilihat oleh pengamat. Namun, sinyal EKG seringkali tidak akurat karena bersifat non-linear dan memiliki amplitudo rendah, sehingga perubahan kecil mungkin dilalaikan oleh mata telanjang manusia. Oleh karena itu, diperlukan metode yang lebih efektif dalam mengklasifikasikan aritmia. Penelitian ini mengusulkan penggunaan metode Bidirectional Recurrent Convolutional Neural Network (BiRCNN) untuk klasifikasi sinyal EKG. Metode BiRCNN menggabungkan Convolutional Neural Network (CNN) yang mengekstraksi fitur morfologi sinyal EKG dan Recurrent Neural Network (RNN) yang menangkap informasi temporal dari detak jantung. Gabungan kedua metode ini diharapkan dapat memberikan hasil yang akurat dan konsisten. Data yang digunakan dalam penelitian ini berasal dari Basis Data MIT-BIH Arrhythmia, yang terdiri dari ribuan rekaman detak jantung normal dan aritmia. Data yang digunakan melalui tahap praproses dengan memilih segmen sinyal EKG dengan 187 titik waktu, dengan normalisasi pada semua data agar berada dalam rentang amplitudo yang sama. Untuk mengatasi ketidakseimbangan kelas dalam dataset, metode SMOTE digunakan untuk meningkatkan jumlah sampel kelas minoritas hingga mencapai 100% dari jumlah sampel kelas mayoritas, sehingga memastikan distribusi data yang lebih seimbang. Evaluasi kinerja model dilakukan menggunakan metrik akurasi, sensitivitas, spesifisitas, dan nilai AUC-ROC. Hasil penelitian dari lima simulasi pembangunan model menunjukkan bahwa metode BiRCNN memiliki kinerja yang baik dalam klasifikasi aritmia, dengan rata-rata nilai akurasi sebesar 98.25%, sensitivitas sebesar 94.67%, spesifisitas sebesar 98.70%, dan AUC-ROC sebesar 99.44%. Berdasarkan hasil penelitian tersebut, metode ini mampu mengidentifikasi aritmia secara konsisten dengan ketepatan yang cukup baik.
Cardiovascular disease, particularly arrhythmia, is one of the leading causes of death in the world. Arrhythmias occur due to heart rhythm disturbances that can be detected using an Electrocardiogram (ECG), detected by analyzing the changes or irregularities in the ECG signal seen by the observer. However, ECG signals are often inaccurate because they are non-linear and have low amplitude, so small changes may be overlooked by the naked human eye. Therefore, a more effective method of classifying arrhythmias is needed. This research proposes the use of Bidirectional Recurrent Convolutional Neural Network (BiRCNN) method for ECG signal classification. The BiRCNN method combines a Convolutional Neural Network (CNN) that extracts morphological features of ECG signals and a Recurrent Neural Network (RNN) that captures temporal information of the heartbeat. The combination of these two methods is expected to provide accurate and consistent results. The data used in this study comes from the MIT-BIH Arrhythmia Database, which consists of thousands of normal and arrhythmic heartbeat recordings. The data used went through a preprocessing stage by selecting ECG signal segments with 187 time points, with normalization on all data to be in the same amplitude range. To overcome the class imbalance in the dataset, the SMOTE method was applied to increase the number of minority class samples to 100% of the number of majority class samples, thus ensuring a more balanced data distribution. Model performance evaluation was performed using accuracy, sensitivity, specificity, and AUC-ROC value metrics. The results of five model fitting simulations showed that the BiRCNN method performed well in arrhythmia classification, with an average accuracy value of 98.25%, sensitivity of 94.67%, specificity of 98.70%, and AUC-ROC of 99.44%. Based on the results, this method is able to identify arrhythmias consistently with fairly good accuracy."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Verena Amanda
"
Air minum yang aman menjadi salah satu kebutuhan yang krusial bagi manusia. Air tanah merupakan salah satu sumber utama untuk memperoleh air minum. Kualitas air dapat bervariasi berdasarkan sumber kontaminan dan waktu atau musim pada tahun tersebut, sehingga diperlukan langkah tambahan untuk memastikan kualitas air. Data penelitian diperoleh dari data historis parameter kimia pH dan konduktivitas untuk sumber air pada salah satu perusahaan Fast Moving Consumer Goods (FMCG) di Indonesia dari bulan Januari 2021 hingga Februari 2023. Data dibagi menjadi dua bagian, training set dan testing set yang kemudian digunakan untuk memprediksi kualitas sumber air menggunakan pendekatan Recurrent Neural Network (RNN) dengan arsitektur Long Short-Term Memory (LSTM) dan Gated Recurrent Units (GRU). Dari penelitian ini, didapatkan pendekatan terbaik yang dapat digunakan untuk mendapatkan akurasi tertinggi pada setiap model yang dibangun. Secara keseluruhan, pendekatan RNN dengan arsitektur LSTM dan GRU dapat digunakan untuk memprediksi kualitas sumber air dengan akurasi yang tinggi.
Safe drinking water is a crucial need for humans. Groundwater is one of the main sources to get drinking water. Water quality varies based on contaminants and time or season of the year, therefore extra steps to ensure water quality are needed. This research used pH and conductivity chemical parameters historical data for source water at one of Fast Moving Consumer Goods (FMCG) companies in Indonesia from January 2021 until March 2023. Data is divided into two sections, the training set and testing set which were used to predict source water quality using Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) architectures. This research aims to know the best approach to use to get the highest accuracy for each developed model. Overall, the RNN approach with LSTM and GRU architectures can be used to predict source water quality with high accuracy."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Jodian Fariza Aji
"
Banjir merupakan bencana alam yang sering terjadi di Indonesia, menimbulkan kerusakan dan mengakibatkan kerugian ekonomi. Hingga saat ini pun, ibukota negara, Jakarta, tak lepas dari banjir akibat luapan dari Sungai Ciliwung. Untuk itu, diperlukan langkah preventif seperti peringatan dini banjir untuk mengurangi kerugian akibat banjir. Namun, sistem peringatan dini banjir yang saat ini dimiliki oleh Balai Besar Wilayah Sungai Ciliwung-Cisadane masih memiliki beberapa kekurangan, seperti model hidrologi yang tidak cocok untuk prediksi jangka pendek dan akurasinya yang belum optimal dan waktu yang belum efisien untuk tahap simulasi berikutnya. Untuk mengatasi kekurangan tersebut, pendekatan machine learning dikembangkan untuk mendapatkan model prediksi tinggi muka air dengan tingkat galat yang rendah dan waktu komputasi yang efisien. Model prediksi banjir diwakilkan oleh tinggi muka air berdasarkan limpasan air hujan dan limpasan dari aliran air ruas hulunya melalui 4 ruas Sungai Ciliwung. Dilakukan perbandingan dua metode berbasis neural network, yaitu Adaptive Neuro-Fuzzy Inference System (ANFIS) dan Recurrent Neural Network-Long Short Term Memory (RNN-LSTM). Model yang unggul secara umum adalah RNN-LSTM dengan tingkat galat yang lebih rendah dan waktu komputasi yang lebih cepat. Pada RMSE dan MAPE, RNN-LSTM unggul pada 3 dari 4 ruas. Waktu komputasi RNN-LSTM selalu lebih cepat dibandingkan dengan ANFIS. Sedangkan dilihat dari R2, baik ANFIS maupun RNN-LSTM memiliki kemampuan yang cukup baik kecuali untuk RNN-LSTM pada ruas ketiga. Sehingga secara keseluruhan RNN-LSTM lebih unggul dalam memprediksi tinggi muka air Sungai Ciliwung dilihat dari tingkat galatnya yang lebih rendah dan efisiensi waktunya. RNN-LSTM juga lebih unggul dalam memprediksi tinggi muka air yang fluktuasi dan standar deviasinya lebih besar.
Floods are natural disasters that often occur in Indonesia, causing damage and economic losses. Until now, the nation's capital, Jakarta, has not been free from flooding due to the overflow of the Ciliwung River. Therefore, preventive action like early warning of floods is needed, to reduce losses due to flooding. However, the flood early warning system currently done by the Ciliwung-Cisadane River Center still has several drawbacks, such as hydrological models that are not suitable for short-term predictions in which resulting their accuracy is not optimal and efficient computing time is needed. To overcome these deficiencies, a machine learning approach is developed to obtain a water level prediction model with a low error and efficient computing time. The model is predicting water level based on rainwater and upstream segment of the river runoff through the 4 segments of the river. Two neural network-based methods, Adaptive Neuro-Fuzzy Inference System (ANFIS) and Recurrent Neural Network-Long Short Term Memory (RNN-LSTM) are compared. Generally, the RNN-LSTM outperformed with a lower error rate and faster computation time. On the RMSE and MAPE, RNN-LSTM excels on 3 out of 4 segments. Based on computing time, RNN-LSTM is always faster than ANFIS. Meanwhile, seen from the R2, both ANFIS and RNN-LSTM have decent capabilities except for RNN-LSTM on the third segment. Hence, the RNN-LSTM is superior in predicting the water level of the river based on its lower error and time efficiency. RNN-LSTM is also superior in predicting water level fluctuations with a larger standard deviation."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library