Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Dea Alifia Maharani
"Retinal detachment (RD), atau ablasi retina, adalah kondisi ketika retina neurosensori terlepas dari lapisan dasarnya, yaitu epitel pigmen retina (EPR), karena kehilangan kerekatan. RD bisa menjadi kondisi yang serius jika tidak segera ditangani, seperti gangguan penglihatan hingga kebutaan permanen. Di Indonesia, diperkirakan terdapat 17.500—25.000 kasus baru setiap tahunnya. Namun, dengan jumlah dokter yang terbatas, pendeteksian RD secara konvensional mungkin tidak dapat dilakukan dengan cepat. Dengan memanfaatkan metode machine learning, khususnya deep learning, yang kini berkembangan pesat, dapat dilakukan pendeteksian RD melalui citra fundus mata menggunakan Convolutional Neural Network (CNN) dengan arsitektur ResNeSt. Terdapat masalah keterbatasan jumlah data pada kelas RD sehubungan dengan perlindungan privasi pasien yang membatasi akses terhadap data medis. Untuk meningkatkan jumlah data, dilakukan augmentasi data dengan GAN untuk menghasilkan data baru berupa citra sintetis untuk kelas RD. Dilakukan pula percobaan dengan menerapkan Contrast Limited Adaptive Histogram Equalization (CLAHE) sebagai tahap preprocessing sebelum augmentasi dengan GAN dengan tujuan meningkatkan kualitas citra yang masuk sebagai input dari GAN. Lebih lanjut, penelitian ini menguji tiga skenario dengan dua rasio splitting data, yaitu 6:2:2 dan 6:1:3. Skenario 1 menjalankan model ResNeSt tanpa preprocessing CLAHE dan augmentasi GAN pada data input. Skenario 2 menjalankan model ResNeSt dengan augmentasi GAN pada data input. Sementara itu, skenario 3 menjalankan model ResNeSt dengan menerapkan preprocessing CLAHE dan augmentasi GAN pada data input. Untuk splitting data dengan rasio 6:2:2, skenario 1 menghasilkan nilai rata-rata accuracy 89,9%, sensitivity 76,3%, specificity 94,3%, dan loss 52,4%, skenario 2 menghasilkan nilai rata-rata accuracy 92,3%, sensitivity 88,2%, specificity 94,8%, dan loss 18,6%, sedangkan skenario 3 menghasilkan nilai rata-rata accuracy 95,9%, sensitivity 94,4%, specificity 96,8%, dan loss 9,8%. Sementara itu, untuk splitting data dengan rasio 6:1:3, skenario 1 menghasilkan nilai rata-rata accuracy 91,3%, sensitivity 78,6%, specificity 94,9%, dan loss 27,9%, skenario 2 menghasilkan nilai rata-rata accuracy 94%, sensitivity 90,2%, specificity 96,3%, dan loss 17,9%, sedangkan skenario 3 menghasilkan nilai rata-rata accuracy 97,9%, sensitivity 97%, specificity 98,4%, dan loss 5,4%. Didapatkan bahwa performa model terbaik adalah ketika menggunakan skenario 3 dengan rasio splitting data 6:1:3.

Retinal detachment (RD), also known as retinal ablation, is a condition where the neurosensory retina separates from its underlying layer, the retinal pigment epithelium (RPE), due to the loss of adhesion. RD can become a serious condition if not promptly treated, potentially leading to vision impairment, even permanent blindness. In Indonesia, an estimated 17,500–25,000 new cases of RD occur annually. However, with a limited number of doctors, conventional detection methods for RD may not be performed swiftly enough. Leveraging machine learning, particularly deep learning, which has rapidly advanced, RD detection can be facilitated through fundus imaging using Convolutional Neural Network (CNN) with ResNeSt architecture. A significant challenge arises due to the limited amount of data available for the RD class, as patient privacy regulations restrict access to medical data. To address this, data augmentation is applied using Generative Adversarial Networks (GAN) to generate synthetic images for the RD class. Additionally, experiments were conducted by applying Contrast Limited Adaptive Histogram Equalization (CLAHE) as a preprocessing step before GAN augmentation, aiming to enhance the quality of the images inputted into the GAN. This study further evaluates three scenarios with two data splitting ratios, 6:2:2 and 6:1:3. Scenario 1 involved training the ResNeSt model without CLAHE preprocessing or GAN augmentation. Scenario 2 involved training the ResNeSt model with GAN augmentation. Scenario 3 involved training the ResNeSt model with both CLAHE preprocessing and GAN augmentation. For the 6:2:2 data splitting ratio, Scenario 1 achieved an average accuracy of 89.9%, sensitivity of 76.3%, specificity of 94.3%, and loss of 52.4%. Scenario 2 achieved an average accuracy of 92.3%, sensitivity of 88.2%, specificity of 94.8%, and loss of 18.6%. Meanwhile, Scenario 3 achieved an average accuracy of 95.9%, sensitivity of 94.4%, specificity of 96.8%, and loss of 9.8%. For the 6:1:3 data splitting ratio, Scenario 1 achieved an average accuracy of 91.3%, sensitivity of 78.6%, specificity of 94.9%, and loss of 27.9%. Scenario 2 achieved an average accuracy of 94%, sensitivity of 90.2%, specificity of 96.3%, and loss of 17.9%. Meanwhile, Scenario 3 achieved an average accuracy of 97.9%, sensitivity of 97%, specificity of 98.4%, and loss of 5.4%. The best model performance was observed in Scenario 3 with a 6:1:3 data splitting ratio."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Manullang, Miranda Rosely
"Karet adalah salah satu komoditas yang memberikan kontribusi yang signifikan dalam ekonomi Indonesia. Indonesia menempati posisi kedua sebagai produsen karet terbesar di dunia. Namun, sejak 2017, penyakit gugur daun karet Pestalotiopsis yang disebabkan oleh Pestalotiopsis sp. telah menjadi ancaman serius bagi budidaya karet dan menyebabkan kerugian ekonomi. Penyakit ini menginfeksi daun, menyebabkan nekrosis dan keguguran daun yang berkelanjutan, yang menghambat fotosintesis. Luas area perkebunan karet yang terjangkit penyakit ini sebesar 382.000 ha pada 2019 dan bertambah seluas 30.328,84 ha pada 2021, menyebabkan hilangnya produksi getah karet (lateks) hingga 30%. Penyakit ini menyebabkan kerugian ekonomi milyaran rupiah dan biaya pengendalian yang mahal, sehingga perlu dilakukan pendeteksian dini agar memungkinkan langkah intervensi yang cepat. Namun, Pendeteksian konvensional membutuhkan waktu, tenaga, dan biaya yang tinggi serta keahlian khusus. Oleh karena itu, pada penelitian ini, dikembangkan model deep learning untuk mengurangi waktu, biaya, dan tenaga dalam mendeteksi tingkat keparahan penyakit gugur daun karet Pestalotiopsis ke dalam 5 tingkat, sesuai dengan penelitian yang dilakukan oleh Pusat Penelitian Karet Sembawa pada tahun 2022. Pada penelitian ini, pendekatan yang dilakukan adalah dengan melatih YOLOv8 segmentation untuk menyegmen bercak pada daun yang menyatakan tingkan keparahan penyakit gugur daun Pestalotiopsis dan tulang daun dari data citra daun karet. Selanjutnya, untuk melatih model klasifikasi ResNeSt, digunakan data citra yang telah disegmentasi oleh model YOLOv8 segmentation yang sudah terlatih. Dengan demikian, klasifikasi tingkat keparahan penyakit gugur daun karet Pestalotiopsis dilakukan dengan hanya memandang bercak penyakit dan tulang daun karet, tanpa memperhatikan warna keseluruhan daun. Metrik yang digunakan adalah precision, recall, mAP50, mAP50-95, dan akurasi. Precision adalah persentase prediksi positif yang benar dari semua prediksi positif, recall adalah persentase kasus positif yang benar-benar teridentifikasi, mAP50 adalah rata-rata precision pada berbagai nilai recall dengan nilai threshold 50, dan mAP50-95 adalah rata-rata precision pada nilai threshold dari 50 hingga 95. Akurasi mengukur persentase prediksi yang benar oleh model secara keseluruhan. Pelatihan model YOLOv8 segmentation menghasilkan rata-rata precision keseluruhan sebesar 70,4%, recall sebesar 68,60%, mAP50 sebesar 64,10%, dan mAP50-95 sebesar 33,64%. Pelatihan model klasifikasi ResNeSt menggunakan data citra yang disegmentasi menggunakan YOLOv8 segmentation menghasilkan akurasi sebesar 78,65%, precision 80,12%, dan recall 79,14%.

Rubber is a commodity that makes a significant contribution to the Indonesian economy. Indonesia occupies the second position as the largest rubber producer in the world, with total production reaching 3.12 million tons (Dekarindo, 2021). However, since 2017, the Pestalotiopsis rubber leaf fall disease caused by Pestalotiopsis sp. has become a serious threat to rubber cultivation and caused economic losses. The disease infects the leaves, causing ongoing necrosis and leaf drop, which inhibits photosynthesis. The area of ​​rubber plantations affected by this disease was 382,000 ha in 2019 and increased by 30,328.84 ha in 2021, causing a loss of rubber latex production of up to 30% (Damiri et al., 2022). This disease causes economic losses of billions of rupiah and expensive control costs, so early detection is necessary to enable rapid intervention. However, conventional detection requires high time, effort and costs as well as special expertise. Therefore, in this research, a deep learning model was developed to reduce the time, costs and energy in detecting the severity of the Pestalotiopsis rubber leaf fall disease into 5 levels, in accordance with research conducted by the Sembawa Rubber Research Center. In this study, the approach used is to train YOLOv8 segmentation to segment Pestalotiopsis leaf fall disease spots and leaf veins from rubber leaf image data. Furthermore, to train the ResNeSt classification model, image data that has been segmented by the trained YOLOv8 segmentation model is used. Thus, the classification of the severity of Pestalotiopsis rubber leaf fall disease is carried out by only looking at the disease spots and rubber leaf veins, without considering the overall color of the leaf. The metrics used are precision, recall, mAP50, mAP50-95, and accuracy. Precision is the percentage of correct positive predictions from all positive predictions, recall is the percentage of positive cases that are actually identified, mAP50 is the average precision at various recall values ​​with a threshold value of 50, and mAP50-95 is the average precision at the threshold value from 50 to 95. Accuracy measures the percentage of correct predictions by the model overall. Training the YOLOv8 segmentation model produced an overall average precision of 70.4%, recall of 68.60%, mAP50 of 64.10%, and mAP50-95 of 33.64%. Training the ResNeSt classification model using image data segmented using YOLOv8 segmentation resulted in an accuracy of 78.65%, precision of 80.12%, and recall of 79.14%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library