Search Result  ::  Save as CSV :: Back

Search Result

Found 15 Document(s) match with the query
cover
Vira Rahmawati
"Deteksi dini lesi payudara berperan penting untuk mengetahui tingkat keganasan tumor payudara dan mempengaruhi perencanaan pengobatan lebih lanjut. Ultrasonografi adalah salah satu modalitas pencitraan pada pemeriksaan payudara dengan kelebihannya yang tanpa menggunakan radiasi pengion, sehingga relatif aman. Namun, ultrasonografi merupakan modalitas yang sangat bergantung pada operator, sehingga akurasi diagnosis melalui citra ultrasonografi bergantung pada keahlian dan subjektifitas ahli radiologi. Oleh karena itu, sistem CAD berbasis pembelajaran mesin diharapkan dapat membantu mendeteksi keabnormalan pada payudara secara objektif. Model U-Net merupakan salah satu arsitektur segmentasi yang dapat digunakan untuk mengidentifikasi dan memetakan area lesi pada citra ultrasonografi. Dalam penelitian ini, teknik pra-pemrosesan tambahan diterapkan untuk membantu meningkatkan akurasi model segmentasi. Evaluasi model segmentasi dilakukan menggunakan metrik evaluasi, terutama JSI (Jaccard Similarity Index). Hasil evaluasi model U-Net tanpa pra-pemrosesan tambahan berhasil memprediksi area lesi dengan nilai JSI 76,3% pada data validasi dan 72,4% pada data uji. Sementara itu, model U-Net dengan pra-pemrosesan augmentasi menghasilkan performa terbaik dengan nilai JSI 83% pada data validasi dan 81,4% pada data uji.

Early detection of breast lesions plays an important role in determining the level of malignancy of breast tumors and influencing further treatment planning. Ultrasound is one of the imaging modalities in breast examination, with the advantage that it does not use ionizing radiation, so it is relatively safe. However, ultrasound is a modality highly dependent on the operator, so the accuracy of diagnosis through ultrasound images depends on the ability and subjectivity of the radiologist. Therefore, a machine learning-based CAD system is expected to help detect breast abnormalities objectively. The U-Net model is one of the segmentation architectures that can be used to identify and map lesion areas in ultrasound images. In this study, additional pre-processing techniques were applied to help improve the accuracy of the segmentation model. Evaluation of the segmentation model was carried out using evaluation metrics, especially JSI (Jaccard Similarity Index). The results of the evaluation of the U-net model without additional pre-processing successfully predicted the lesion area with a JSI value of 76,3% in the validation data and 72,4% in the test data. Meanwhile, the U-Net model with augmentation pre-processing gets the best performance with a JSI value of 83% in the validation data and 81,4% in the test data. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hilda Auliana
"Dalam dokumen Global Tuberculosis Report 2022, World Health Organization (WHO) melaporkan bahwa Indonesia tercatat sebagai negara dengan beban kasus tuberkulosis (TB) terbanyak kedua setelah India pada tahun 2021 lalu, di mana terhitung dari estimasi 969.000 kasus penderita TB di Indonesia, terdapat 525.765 (54,3%) kasus diantaranya belum ditemukan dan diobati, ini berpotensi menjadi sumber penularan serta meningkatan risiko transmisi komunal jika tidak mendapatkan penanganan segera. Menanggapi hal tersebut, dengan kemajuan teknologi kecerdasan buatan yang ada serta melalui peran pencitraan medis sebagai salah satu metode skrining pendukung, dikembangkan sebuah model pendeteksian berbasis arsitektur U-Net yang mampu secara otomatis mengenali dan melokalisasi area berbagai jenis kelainan indikator TB paru pada citra rontgen thorax. Selain melakukan tuning parameter, dibandingkan beberapa kasus segmentasi semantik multi-kelas, diantaranya terdiri atas 14 kelas kelainan spesifik, 5 kelas kelompok kelainan, dan 3 kelas kelompok kelainan, serta kasus segmentasi semantik biner. Hasil memperlihatkan bahwa pada kasus multi-kelas, semakin sedikit kelas yang digunakan, maka semakin besar nilai dice score yang didapat, yaitu mencapai 0,71. Sementara, jika dibandingkan dengan kasus segmentasi biner, meski dice score mengalami peningkatan, namun berdasarkan hasil visualisasi, kasus segmentasi multi-kelas kurang mampu dalam mengenali kondisi paru normal atau tidak memiliki kelainan.

In the Global Tuberculosis Report 2022 document, the World Health Organization (WHO) reports that Indonesia is listed as the country with the second highest burden of tuberculosis (TB) cases after India in 2021, where from an estimated 969.000 cases of TB sufferers in India, there are 525.765 ( 54,3%) cases of which have not been found and treated, this has the potential to become a source of transmission and increase the risk of communal transmission if treatment is not immediately received. In response to this, with advances in existing artificial intelligence technology and through the role of medical imaging as a screening support method, a detection model based on the U-Net architecture was developed that can automatically recognize and localize areas of various types of pulmonary TB marker indicators on chest X-ray images. In addition to parameter tuning, several cases of multi-class semantic segmentation were compared, which consisted of 14 specific disorder classes, 5 class disorder clusters, and 3 class disorder clusters, as well as cases of binary semantic segmentation. The results reveal that in the multi-class case, the fewer classes used, the greater the dice score obtained, which is 0,71. Meanwhile, when compared with binary segmentation cases, even though the dice score has increased, based on visualization results, multi-class segmentation cases are less able to recognize normal lung conditions or have no abnormalities."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahdia Aliyya Nuha Kiswanto
"Skripsi ini membahas mengenai penggunaan model segmentasi semantik UNet sebagai alternatif metode segmentasi wajah dan tangan gerakan isyarat SIBI (Sistem Isyarat Bahasa Indonesia) pada latar belakang kompleks. Penelitian dilakukan terhadap dataset gerakan isyarat SIBI milik Lab MLCV Fakultas Ilmu Komputer Universitas Indonesia. Dalam penelitian ini, dilakukan percobaan dengan tiga jenis konfigurasi UNet, yaitu UNet 4- level tanpa Batch Normalization, UNet 5-level tanpa Batch Normalization, dan UNet 4- level dengan Batch Normalization. Hasil segmentasi dari UNet konfigurasi terbaik kemudian dilakukan tahap pengenalan selanjutnya, yaitu ekstraksi fitur dengan MobileNetV2, penghapusan gerakan transisi dengan TCRF, dan gesture recognition dengan 2-layer biLSTM untuk mendapatkan hasil translasi serta evaluasi akhir. Selain itu, performa sistem dengan menggunakan metode segmentasi UNet dibandingkan dengan performa sistem dengan menggunakan metode segmentasi RetinaNet+Skin Color Segmentation. Hasil dari penelitian didapatkan bahwa konfigurasi UNet 4-level dengan Batch Normalization menghasilkan segmentasi yang sedikit lebih baik dibandingkan konfigurasi lainnya, yaitu dengan nilai IOU 0,9178% pada dataset berlatar belakang kompleks. Performa UNet terlihat baik pada saat kedua tangan berada di depan badan, dan menurun ketika tangan berada di posisi yang berdekatan dengan area kulit lainnya (lengan, leher, wajah). Didapatkan juga bahwa sistem pengenalan isyarat SIBI ke teks bahasa Indonesia dengan menggunakan metode segmentasi UNet berhasil memiliki performa yang lebih baik dibandingkan menggunakan metode segmentasi RetinaNet+Skin Color Segmentation, dengan nilai WER 2,703% dan SAcc 82,424% pada latar belakang kompleks. Didapatkan juga waktu komputasi UNet yang lebih cepat dibandingkan RetinaNet dengan waktu segmentasi 0,19643 detik per frame pada CPU NVIDIA DGX A100

This thesis discusses the use of the UNet semantic segmentation model as an alternative to hand and face segmentation methods for SIBI (Indonesian Signing System) on complex backgrounds. This research was conducted on SIBI gesture dataset by MLCV Lab (Faculty of Computer Science, Universitas Indonesia). In this study, experiments were conducted with three types of UNet configurations, namely 4-level UNet without Batch Normalization, 5-level UNet without Batch Normalization, and 4-level UNet with Batch Normalization. Segmentation results from the best UNet configuration is then carried out in the next stage of the system, namely feature extraction with MobileNetV2, epenthesis removal with TCRF, and gesture recognition with 2-layer biLSTM to obtain translation results and the final evaluations. In addition, system performance using the UNet segmentation method is compared to system performance using the RetinaNet+Skin Color Segmentation method. The results of the study showed that the 4-level UNet configuration with Batch Normalization produces slightly better segmentation than the other configurations, with an IOU of 0.9178% on a dataset with a complex background. Based on the sample results, UNet performance is good when both hands are on the front of the body, and it decreases when the hands are in close proximity to other skin areas (arms, neck, face). It was also found that the SIBI gesture recognition system to Indonesian text using the UNet segmentation method managed to have better performance than using the RetinaNet+Skin Color Segmentation, with a WER value of 2.703% and a SAcc of 82.424% on a complex background. It was also found that UNet processing time was faster than RetinaNet with a segmentation rate of 0.19643 seconds per frame on the NVIDIA DGX A100 CPU."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fityan Azizi
"Penyakit kardiovaskular merupakan penyakit dengan angka kematian tertinggi di dunia. Fungsi jantung perlu diperiksa secara akurat dan efisien agar penyakit kardiovaskular dapat terdeteksi dengan baik. Penilaian fungsi jantung umumnya dilakukan dengan memberi tanda ventrikel kiri secara manual. Hal tersebut memiliki kekurangan karena dapat memakan waktu, rawan kesalahan karena resolusi citra yang rendah, dan memiliki perbedaan hasil yang bervariasi antar pemeriksa. Oleh karena itu, penandaan ventrikel kiri secara otomatis dengan segmentasi sangat penting agar pemeriksaan fungsi jantung dapat dilakukan lebih efektif dan efisien. Dalam penelitian ini, dilakukan pengembangan model deep learning untuk pekerjaan segmentasi ventrikel kiri pada citra ekokardiografi menggunakan encoder yang dimiliki U-Net, ditambahkan dengan modul Atrous Spatial Pyramid Pooling dan decoder yang dimiliki DeeplabV3+. Selanjutnya, ditambahkan Coordinate Attention pada tahap akhir dalam encoder untuk penyempurnaan fitur. Dilakukan uji pada dataset Echonet-Dynamic, Hasil penelitian menunjukkan bahwa melakukan penggabungan antara encoder yang dimiliki U-Net dan decoder yang dimiliki DeeplabV3+ mampu memberikan peningkatan performa dibandingkan model U-Net dan DeeplabV3+, juga memberikan hasil yang lebih baik dibandingkan penelitian sebelumnya, dengan menghasilkan nilai dice similiarity coefficient sebesar 92.91%.

Cardiovascular disease is a disease with the highest mortality rate in the world. Heart function needs to be checked accurately and efficiently so that cardiovascular disease can be detected properly. Assessment of cardiac function is generally done by marking the left ventricle manually. This has the drawbacks of being time-consuming, error-prone due to low image resolution, and have inter-observer variability. So that automatic marking of the left ventricle with segmentation is very important so that the examination of cardiac function can be carried out more effectively and efficiently. In this study, a deep learning model was developed for left ventricle segmentation on echocardiographic images using an encoder in U-Net, added with the Atrous Spatial Pyramid Pooling module and an decoder in DeeplabV3+. Furthermore, the Coordinate Attention Module was added at the final stage in the encoder for feature enhancements. Tests were carried out using the Echonet-Dynamic dataset. The results showed that combining the encoder in U-Net and the decoder in DeeplabV3+ was able to provide increased performance compared to the U-Net and DeeplabV3+ models, also gives better results than previous research, by producing a dice similarity coefficient of 92.91%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nisrina Dinda Dhamayanti
"Kanker kulit berasal dari lesi kulit yang memiliki penampilan atau pertumbuhan jaringan kulit yang tidak biasa. Melanoma adalah kanker kulit paling berbahaya dan menyebabkan banyak kematian jika tidak terdeteksi sedini mungkin. Pendeteksian sedini mungkin mendesak untuk dilakukan mengingat dapat meningkatkan angka survival rate sebesar 95%. Cara pendeteksiaan saat ini yang menggunakan metode manual masih kurang handal dan memakan banyak waktu. Teknologi deep learning dapat menjadi solusi yang dapat dimanfaatkan untuk melakukan segmentasi lesi kulit. Untuk penelitian ini, penulis mengusulkan penggunaan teknik Residual U-Net berbasis deep-convolutional neural network untuk segmentasi lesi kulit. Teknik Residual U-Net yang diusulkan menggunakan Residual Block, Group Normalization, dan Tversky Loss ke dalam arsitektur berbasis U-Net. Penggunaan Residual Block dapat mengatasi permasalahan error jaringan yang tinggi akibat adanya vanishing gradient serta meningkatkan ekstraksi representasi fitur gambar. Model dilatih dan dievaluasi menggunakan dataset yang berasal dari International Skin Imaging Collaboration (ISIC) 2018. Penelitian ini berhasil meningkatkan kinerja model dalam melakukan segmentasi lesi kulit dengan nilai dice similarity coefficient, jaccard index, accuracy, sensitivity, specificity, dan precision masing-masing, sebesar 0.86, 0.76, 0.93, 0.88, 0.96, dan 0.85.

Skin cancer originates from skin lesions that have an unusual appearance or growth of skin tissue. Melanoma is the most dangerous skin cancer and causes many deaths if not detected early. Early detection is urgent to do considering it can increase the survival rate by 95%. The current detection method using the manual method is still less reliable and takes a lot of time. Deep learning technology can be a solution that can be used to segment skin lesions. For this study, the authors propose the use of a Residual U-Net technique based on a deep-convolutional neural network for segmenting skin lesions. The proposed Residual U-Net technique uses Residual Block, Group Normalization, and Tversky Loss into a U-Net-based architecture. The use of Residual Block can overcome the problem of high network error due to the vanishing gradient and improve the extraction of image feature representation. The model was trained and evaluated using a dataset from the International Skin Imaging Collaboration (ISIC) 2018. This study succeeded in improving the model's performance in segmenting skin lesions with values ​​of dice similarity coefficient, jaccard index, accuracy, sensitivity, specificity, and precision of 0.86, 0.76 , 0.93, 0.88, 0.96, and 0.85.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Armelia Ramandha
"Electrical Impedance Tomography (EIT) sebagai alat pencitraan non-invasif dan fungsional semakin banyak digunakan, terutama untuk pemantauan paru-paru. Namun, kompleksitas EIT mengakibatkan waktu pemrosesan yang lambat dan kualitas gambar yang kurang baik, sehingga sulit diterapkan secara real-time. Penelitian ini mengembangkan phantom resistor yang mensimulasikan struktur paru-paru dan meningkatkan kualitas citranya dengan metode segmentasi berbasis AI. Phantom resistor ini mampu meniru impedansi listrik jaringan tubuh pada area paru-paru (kulit 1k ohm, lemak 4.7k ohm, otot 1k ohm, dan paru-paru 2.2k ohm) dan menunjukkan perbedaan citra antara kondisi ekspirasi dan inspirasi dengan nilai mean, standar deviasi, dan varian sampel yang baik. Dataset terdiri dari 594 gambar dengan variasi tipe rekonstruksi, urutan elektroda injeksi, dan posisi, digunakan untuk melatih model segmentasi. Model segmentasi K-means dengan 4 klaster dan U-Net diuji pada phantom resistor paru-paru, menunjukkan akurasi validasi 0.7071 dan kerugian validasi 0.1441, berhasil mensegmentasi jaringan tubuh di sekitar paru-paru. Peningkatan kualitas citra EIT diukur dengan SSIM terbaik sebesar 0.8225 pada segmentasi K-means, meskipun kesamaan perseptual belum dapat ditingkatkan, dengan nilai LPIPS terbaik sebesar 0.1885 pada gambar original hasil rekonstruksi EIT. Penelitian ini menunjukkan bahwa phantom resistor dan segmentasi berbasis AI dapat meningkatkan kualitas citra EIT dan memvalidasi perangkat tanpa pengujian langsung pada manusia.

Electrical Impedance Tomography (EIT) as a non-invasive and functional imaging tool is increasingly used, particularly for lung monitoring. However, the complexity of EIT results in slow processing times and poor image quality, making real-time application challenging. This study developed a resistor phantom that simulates lung structure and improves image quality using AI-based segmentation methods. The resistor phantom can mimic the electrical impedance of body tissues in the lung area (skin 1k ohm, fat 4.7k ohm, muscle 1k ohm, and lungs 2.2k ohm) and demonstrates image differences between expiratory and inspiratory conditions with good mean, standard deviation, and sample variance values. A dataset of 594 images with variations in reconstruction type, electrode injection sequence, and position was used to train the segmentation model. Segmentation models using K-means with 4 clusters and U-Net were tested on the lung resistor phantom, showing validation accuracy of 0.7071 and validation loss of 0.1441, successfully segmenting body tissues around the lungs. Improved EIT image quality was measured with the best SSIM value of 0.8225 in K-means segmentation, although perceptual similarity could not be improved, with the best LPIPS value of 0.1885 on the original EIT reconstructed images. This study demonstrates that the resistor phantom and AI-based segmentation can enhance EIT image quality and validate devices without direct human testing."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Aliza Mudrikah
"Kanker payudara merupakan salah satu jenis kanker dengan kasus terbanyak di dunia pada tahun 2022. Sebagai salah satu sistem deteksi awal, ultrasound digunakan sebagai pendamping mammografi untuk mendiagnosis kanker atau lesi pada payudara. Salah satu bagian dari diagnosis adalah segmentasi lesi pada citra. Pada penelitian ini, dilakukan implementasi model U-Net termodifikasi untuk melakukan segmentasi lesi secara otomatis pada citra ultrasound payudara. Penelitian ini menggunakan dua model U-Net termodifikasi, yaitu UNET++ dan UResNet-34 yang dievaluasi dengan metrik Jaccard Similarity Index (JSI) dan Dice Similarity Coefficient (DSC). Pada penelitian ini, performa U-Net termodifikasi dalam melakukan segmentasi pada data latihan yang digambarkan dengan nilai JSI secara berturut-turut pada model UNET++ variasi 1, UNET++ variasi 2, UResNet-34 variasi 1, dan UResNet-34 variasi 2 adalah 96,09%, 96,05%, 91,22%, dan 89,87%, sedangkan pada data pengujian, secara berturut-turut adalah 76,07%, 74,14%, 73,11%, dan 78,54% menggunakan metode pertama dan 79,23%, 78,91%, 80,72%, dan 79,70% menggunakan metode kedua. Model U-Net termodifikasi mampu melakukan segmentasi lebih baik daripada model U-Net biasa, baik dengan lapisan batch normalization, maupun tanpa lapisan batch normalization.

Breast cancer is one of the types of cancer that requires an early detection system. Ultrasound imaging is commonly used to diagnose cancer or lesions in the breast. In this study, a modified U-Net model was implemented to perform lesion segmentation on breast ultrasound images. Two modified U-Net models were utilized, namely UNET++ and UResNet-34, and evaluated using the Jaccard Similarity Index (JSI) and Dice Similarity Coefficient (DSC) metrics. In this study, the performance of the modified U-Net models on the training data, as indicated by JSI scores, were 96.09%, 96.05%, 91.22%, and 89.87% for UNET++ variation 1, UNET++ variation 2, UResNet-34 variation 1, and UResNet-34 variation 2, respectively. On the test data, the scores were 76.07%, 74.14%, 73.11%, and 78.54% using the first method, and 79.23%, 78.91%, 80.72%, and 79.70% using the second method. The modified U-Net models demonstrated better segmentation performance compared to the standard U-Net model. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Noor Dwi Eldianto
"White Matter Hyperintensities (WMH) adalah area di otak yang memiliki intensitas yang lebih tinggi dibandingkan dengan area normal lainnya pada hasil pemindaian Magnetic Resonance Imaging (MRI). WMH seringkali terkait dengan penyakit pembuluh kecil di otak, sehingga deteksi dini WMH sangat penting. Namun, terdapat dua masalah umum dalam mendeteksi WMH, yaitu ambiguitas yang tinggi dan kesulitan dalam mendeteksi WMH yang berukuran kecil. Dalam penelitian ini, kami mengusulkan metode yang disebut Probabilistic TransUNet untuk mengatasi masalah segmentasi objek WMH yang berukuran kecil dan ambiguitas yang tinggi pada citra medis. Kami melakukan eksperimen K-fold cross validation untuk mengukur kinerja model. Berdasarkan hasil eksperimen, model berbasis Transformer (TransUNet dan Probabilistic TransUNet) lebih baik dan presisi dalam melakukan segmentasi pada obyek WMH yang berukuran kecil, hal ini ditunjukkan oleh nilai Dice Similarity Coefficient (DSC) yang dihasilkan lebih tinggi dibandingkan dengan model berbasis Convolutional Nueral Networks (CNN) (U-Net dan Probabilistic U-Net). Penambahan probabilistic model dan pendekatan berbasis transformer berhasil mendapatkan performa yang lebih baik. Metode yang kami usulkan berhasil mendapatkan nilai DSC sebesar 0,744 dalam 5-fold cross validation, lebih baik dari metode sebelumnya. Dalam melakukan segmentasi objek kecil metode usulan kami mendapatkan nilai DSC sebesar 0,51.

White Matter Hyperintensities (WMH) are areas of the brain that have a higher intensity than other normal brain regions on Magnetic Resonance Imaging (MRI) scans. WMH is often associated with small vessel disease in the brain, making early detection of WMH important. However, there are two common issues in detecting WMH: high ambiguity and difficulty detecting small WMH. In this study, we propose a method called Probabilistic TransUNet to address the precision of small object segmentation and the high ambiguity of medical images. We conducted a k-fold cross-validation experiment to measure model performance. Based on the experiments, Transformer-based models (TransUNet and Probabilistic TransUNet) were found to provide more precise and better segmentation results, as demonstrated by the higher DSC scores obtained compared to CNN-based models (U-Net and Probabilistic U-Net) and their ability to segment small WMH objects. The proposed method obtained a DSC score of 0742 in k-fold cross-validation, better than the previous method. In conducting segmentation of small objects, our proposed method achieved a DSC score of 0,51."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Naufal Muhammad Hirzi
"instance point cloud memungkinkan untuk melakukan segmentasi bentuk dari instance 3D yang berbeda pada kelas semantik yang sama. Penerapan segmentasi 3D pada pemodelan 3D area perkotaan dapat merangsang perkembangan lebih lanjut untuk menganalisis pemodelan 3D area perkotaan. Segmentasi instance 3D point cloud perkotaan memiliki tantangan tersendiri, sebagai contoh ukuran skala besar dan bentuk instance yang lebih beragam, dibandingkan 3D point cloud di dalam ruang. Penelitian ini mengajukan optimasi dari segmentasi instance 3D point cloud pada daerah perkotaan skala besar dengan optimasi metode pencacahan menggunakan metode pencacahan overlapping dan modifikasi bagian backbone Hierarchical Aggregation 3D Instance Segmentation (HAIS) dengan 3D U-Net Attention ASPP Sparse CNN (metode proposed). Eksperimen dan evaluasi dilakukan terhadap HAIS dan metode proposed. Berdasarkan hasil eksperimen, didapati penggunaan metode pencacahan ukuran 50 overlapping dan modifikasi backbone HAIS dengan 3D U-Net Attention ASPP Sparse CNN (dengan hasil evaluasi AP = 48.78, AP50 = 60.45 dan AP25 = 65.33) memiliki tren kenaikan performa lebih baik dibandingkan dengan metode baseline (dengan hasil evaluasi AP = 44.83, AP50 = 56.48 dan AP25 = 62.36).

Instance segmentation of 3D point cloud is possible to perform the segmentation of 3D object shape and to differentiate instances on similar semantic class. Urban Area's large-scale 3D point cloud instance segmentation has its own challenges, namely large-scale instance forms and is more diverse, compared to indoor 3D point clouds. This study proposed optimization of 3D point cloud instance segmentation in largescale urban areas by enhancing the patching method by using overlapping method and modifying the HAIS backbone section with 3D U-Net Attention ASPP Sparse CNN (the proposed method). The experiments and evaluations will be carried out on HAIS model with baseline method from STPLS3D and our proposed method. Based on our experimental results, was found by using patching method 50 size overlapping and modification of the HAIS backbone with 3D U-Net Attention ASPP Sparse CNN (evaluation results of AP = 48.78, AP50 = 60.45 and AP25 = 65.33) has trend to increase the performance of HAIS method which is better than the baseline method (evaluation results AP = 44.83, AP50 = 56.48 and AP25."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rizal Maulana
"White Matter Hyperintensities (WMHs) merupakan neuroradiological features yang dapat dilihat pada T2-FLAIR brain MRI sebagai bagian putih (hyperintensities) dan merupakan karakteristik dari small vessel disease (SVD). Informasi detail terkait WMHs (lokasi, volume, dan distribusi) sangat diperlukan untuk membantu penanganan pasien. Akan tetapi melakukan segmentasi otomatis pada WMHs merupakan tantangan tersendiri karena ukuran, bentuk, dan letak WMHs yang tidak menentu. Hasil evaluasi dapat berubah bila test set berasal dari dataset yang berbeda dari train set, karena setiap dataset akan memiliki karakteristik yang berbeda. Penelitian ini mengusulkan model bernama Probabilistic Multi-compound Transformer (Probabilistic MCTrans) yang menggantikan model U-Net pada Probabilistic U-Net menjadi model MCTrans. Secara penelitian sebelumnya, model MCTrans dapat menyelesaikan permasalahan long-range dependencies dan model Probabilistic U-Net dapat menangkap ambiguitas dari citra medis, serta akan melakukan evaluasi cross-dataset robustness untuk mengetahui performa model bila train set berbeda sumber dari test set. Dari hasil evaluasi menunjukan bahwa Probabilistic MCTrans memiliki performa yang lebih rendah dibandingkan dengan Probabilistic U-Net. Akan tetapi Probabilistic MCTrans memiliki performa lebih baik dibandingkan dengan MCTrans. Hal tersebut dapat terjadi karena ambiguitas yang ditangkap Probabilistic MCTrans lebih banyak dari Probabilistic U-Net dan ambiguitas banyak terjadi di border WMHs. 

White Matter Hyperintensities are neuroradiological features that often seen in T2-FLAIR brain MRI as hyperintensities and characteristic of small vessel disease (SVD). Detailed information of WMHs (i.e. location, volume, and distribution) are needed in clinical research to help treat patients. However, automatic segmentation on WMHs is still challenging due to uncertain volume, shape, and location of WMHs. Evaluation results may change if test set came from different dataset as train set, because every dataset have their own characteristic. In this study, we propose a model called Probabilistic Multi-compound Transformer (Probabilistic MCTrans), that replace U-Net from Probabilistic U-Net’s with MCTrans. In previous study, model MCTrans can solved long-range dependencies problem and model Probabilistic U-Net can capture ambiguity in biomedical image, also we would like to evaluate on cross-dataset robustness to determine performance model when the train set differs in source from the test set. The evaluation results show that Probabilistic MCTrans has a lower performance than Probabilistic U-Net. However, Probabilistic MCTrans has better performance than MCTrans. Furthermore, the ambiguity captured by Probabilistic MCTrans is more than Probabilistic U-Net and the ambiguity is around the border of WMHs. "
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>