Ditemukan 2 dokumen yang sesuai dengan query
Asma Rosyidah
Abstrak :
ABSTRAK
Peningkatan jumlah pengguna internet di Indonesia menunjang pertumbuhan platform e-commerce. Adanya potensi basis pelanggan yang lebih besar dan lebih beragam menjadi peluang sekaligus tantangan akibat peningkatan persaingan yang terjadi antar platform. Oleh karena itu, e-commerce perlu mengembangkan strategi pemasaran digital untuk menarik dan mempertahankan pelanggan. Sistem rekomendasi merupakan salah satu bentuk personalisasi layanan web yang dapat menunjang aktivitas pemasaran dengan memprediksi preferensi pengguna dan membantu menemukan produk yang mungkin diminati. Menilik pentingnya integrasi antara ecommerce sebagai advertiser dengan publisher dalam konsep strategi pemasaran, penelitian ini dilakukan untuk menganalisis preferensi pelanggan terhadap kategori produk berdasarkan pola navigasi yang terintegrasi pada website publisher dan e-commerce dengan membangun sistem rekomendasi terintegrasi antara e-commerce sebagai advertiser dengan publisher melalui ad platform menggunakan web mining. Berdasarkan hasil penelitian ini, model prediksi preferensi pelanggan terhadap kategori produk yang dibangun berdasarkan pola navigasi pelanggan pada e-commerce menggunakan algoritma decision tree C5.0 memiliki kinerja yang baik untuk memprediksi kategori produk preferensi pengguna dalam permintaannya di masa mendatang. Namun, proses integrasi pola navigasi dan topik penelusuran pada publisher kepada pola navigasi pelanggan pada e-commerce belum dapat memberikan pengaruh yang signifikan terhadap performa model prediksi preferensi pada e-commerce.
ABSTRACT
Increasing number of internet users in Indonesia boosts the development of e commerce platform. Whereas potential access to a larger and more diverse customer base is generally viewed as an opportunity, it can also represent increase in competition among e commerce platforms. Hence, e commerce needs to develop sophisticated digital marketing strategies to attract and retain customers. Recommendation system is one of web service personalization which enhances marketing activity by predicting user preferences and helps them find products that they may be interested in. Given the importance of integration between e commerce as advertiser and publisher in marketing strategy concept, this research was done to analyze customer preferences towards product categories based on navigation pattern in both publisher and e commerce by building integrated recommendation system between e commerce as advertiser and publisher through ad platform using web mining. Based on the results of this study, predictive models of customer preferences towards product category builds based on customer navigation pattern on e commerce using decision tree C5.0 algorithm has good performance to predict user preferred product categories in future demand. However, the integration of customer navigational patterns and search topics in publishers to customer navigation patterns in e commerce has not been able to significantly influence the performance of customer preference prediction models in e commerce.
2018
T51192
UI - Tesis Membership Universitas Indonesia Library
Mega Oktafiani Putri
Abstrak :
Media sosial telah menjadi fenomena dunia, lebih dari 80% pengguna Internet adalah penguna media sosial. Ketika terjadi sebuah bencana, kebutuhan informasi akan meningkat. Twitter merupakan salah satu sumber informasi populer terutama di Indonesia yang tercatat sebagai negara pengguna twitter terbanyak di asia. Oleh karena itu dibutuhkan sebuah sistem yang dapat mengekstraksi informasi dari media sosial. Penelitian ini menawarkan sebuah sistem yang dapat mendeteksi topik pada media sosial twitter dengan merepresentasikan konten media sosial twitter ke graph jaringan kompleks menggunakan pengimplentasian metode pembentukan graph (pengolahan bahasa natural dan konsep graph) dan metrik pengkukur jaringan kompleks sebagai acuan analisa.
Sistem analisa media sosial pada penelitian ini terdiri dari 3 buah subsistem yaitu crawler dengan mengunakan perangkat lunak the archvist, graph converter berupa perangkat lunak Textttogexf untuk Bahasa Indonesia yang diimplementasikan pada bahasa pemrograman Ruby berdasarkan perangkat lunak Textttogexf untuk Bahasa Jepang, dan perangkat lunak untuk memvisualisasikan graph (gephi dan gvedit). Berdasarkan hasil pengujian, metode pembobotan yang paling baik untuk media sosial twitter adalah pembobotan RIDF dan pendefinisian dokumen berdasarkan kategori (persentase keberhasilan: 89%). Pada penelitian ini, topik umum mengenai pilkada 2012 dan 13 sub topik berhasil diekstraksi dari set data banjir Jakarta.
......Social media had become worldwide phenomena. More than 80% of Internet?s users are social media?s users. When a disaster occurred, information needs will rise. Twitter is one of popular information resource especially in Indonesia. Because of that, twitter?s information extraction system was needed. This research proposes a system that can detect topic in social media twitter by representing its content as a complex network graph using the implementation of natural language processing, graph concept, and complex network analysis.
This system consists of 3 subsystems which are crawler, graph converter, and application for graph visualization. The Graph visualization is done using Gephi and Graphviz. From testing result, we reach 89% success rate of keyword extraction using RIDF term weighting method and collecting messages by certain category. General topic about governor election and 13 subtopics was successfully extracted from set data flood in Jakarta.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42095
UI - Skripsi Open Universitas Indonesia Library