Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
A`Isyah Fadhillah
"Co-pirolisis termal antara bonggol jagung dan PP pada laju pemanasan rendah telah berhasil memisahkan bio-oil fasa oksigenat dan non-oksigenat secara spontan. Pada co-pirolisis, PP dapat mengambil oksigen dari bio-oil untuk mengkonversi sebagian bio-oil menjadi fasa non-oksigenat sehingga dapat berkontribusi dalam perengkahan PP. Namun, kemampuan PP untuk mengubah oksigen sangat lemah. Pada penelitian ini, zeolit digunakan sebagai katalis pada co-pirolisis bonggol jagung dan PP pada laju pemanasan rendah guna mengurangi energy aktivasi dari pirolisis PP, sehingga akan mengurangi suhu dekomposisi massa PP hingga kurang dari 400 oC. pada penelitian sebelumnya, belum pernah ada katalitik pirolisis menggunakan laju pemanasan rendah untuk meningkatkan yield fase non-oksigenat pada co-pirolisis biomass dan PP. Penelitian ini dilakukan di reaktor berpengaduk dengan laju pemanasan 5 oC/menit dan suhu pirolisis 500 oC. komposisi umpan yang digunakan adalah 0; 50 dan 100%PP. Katalis yang digunakan adalah katalis zeolit alam dan zeolit sintetik ZSM-5 dengan dua rasio Si/Al yang berbeda yaitu 38 dan 70. Penggunaan katalis menghasilkan produk senyawa alifatik seperti metil, metilen dan methin yang tingggi. Dengan penambahan tipe katalis zeolit ZSM-5 produksi dari alilik yang merupaan rantai yang berhubungan dengan alkena berkurang. Apabila dilhat dari kualitas bio-oil, sebagian besar fraksi bio-oil non-polar memiliki nilai HHV yang hampir sama atau sedikit lebih tinggi dari bahan bakar komersial yaitu diesel dan gasoline. Selain itu apabila dilihat dari nilai BI (Branching Index) bio-oil fraksi non-polar menghasilkan rantai karbon lurus dengan cabang yang lebih banyak apabila dibandingkan dengan bahan bakar komersial. Dari perbandingan HHV dan BI, nilai HHV dan BI bio-oil fraksi non-polar lebih mendekati nilai HHV dan BI dari gasoline komersial.
......Thermal co-pyrolysis of corn cobs and polypropylene (PP) at low heating rate has succeeded in separating bio-oil produced between oxygenated and non-oxygenated phases spontaneously. In co-pyrolysis, PP can sequester oxygen from bio-oil to convert part of bio-oil to non-oxygenated phase and can contribute partly non-oxygenated phase by PP carbon chain cracking. However, the capability of PP pyrolates to sequester oxygen is still low. In present work, zeolite catalyst was introduced in co-pyrolysis of corn cobs and PP at low heating rate, in order to reduce activation energy of PP pyrolysis and therefore reducing the lowest temperature of PP mass decomposition to less than 400oC. There has been no research previously conducted to employ catalytic co-pyrolysis at low heating rate to improve non-oxygenated phase yield in co-pyrolysis of biomass-plastic. The present co-pyrolysis work was carried out in a stirred tank reactor at heating rate of 5oC/min and maximum temperature of 500oC. The composition of feed was varied at 0, 50 and 100%PP in the mixture of corn cob particles and PP granules. There were two types of zeolite catalysts used in this experiment, natural zeolite and ZSM-5 with two different ratio, 38 and 70. Utilization of catalyst generated high amount of aliphatic moieties, i.e. methyl, methine and methylene. With ZSM-5 catalyst utilization, production of allyl decreased. Most of non-polar bio-oil fractions have similar or slightly higher higher heating values (HHVs) compared to those of commercial fuels. Branching index (BI) values of non-polar phase of bio-oil generated traight carbon chain with higher branches compared to those commercial fuels. From the comparison of HHV and BI value, non-polar phase of bio-oil generate HHV and BI value closer to commercial gasoline."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mevricka Aurinda Garini
"Karbon dioksida merupakan salah satu gas utama yang menyebabkan emisi gas rumah kaca yang berada pada atmosfer. Dikarenakan sifatnya yang inert, CO2 sulit bereaksi dengan senyawa lain sehingga dibutuhkan suatu katalis. Pada penelitian ini digunakan zeolit ZSM-5 berpori hirarki bersumber mineral alam yaitu zeolit alam Bayat dan kaolin Bangka yang diimpregnasi bimetal NiZn sebagai katalis untuk mengkonversi CO2 dengan bantuan dari asetilena untuk menghasilkan asam akrilat. Zeolit ZSM-5 alam berpori hirarki disintesis menggunakan metode double template, dengan primary template TPAOH sebagai pengarah framework MFI serta secondary template PDDA-M sebagai pengarah struktur mesopori. Impregnasi logam bimetal nikel (Ni) dan seng (Zn) dengan metode co-impregnation lalu direduksi dengan aliran gas H2. Karakterisasi material ZSM-5 alam berpori hirarki dan NiZn/ZSM-5 alam berpori hirarki dilakukan dengan menggunakan FTIR, XRD, XRF, dan SEM-EDS. Analisis XRD menunjukkan kristalinitas dari ZSM-5 alam berpori hirarki berhasil disintesis. Analisis FTIR menunjukkan telah terjadinya dekomposisi template melalui kalsinasi. Pencitraan SEM menunjukkan morfologi material dengan bentuk coffin like-shaped yang merupakan ciri khas ZSM-5. Hasil analisisis EDS menunjukkan persen loading Ni dan Zn dalam ZSM-5 masing-masing sebesar 6,38% dan 3,23%. Reaksi karboksilasi asetilena dengan CO2 dilakukan dalam reaktor batch dengan variasi tekanan yaitu 1,5 bar, 2,5 bar, dan 3,5 bar. Produk hasil reaksi yang terbentuk dianalisis dengan HPLC. Dari hasil analisis HPLC diperoleh puncak pada waktu retensi 3,45 menit dengan kondisi optimum yaitu tekanan 2,5 bar, dan luas area sebesar 302,836 mAU. Sehingga, menunjukkan tidak adanya asam akrilat dalam produk.
......Carbon dioxide is one of the main gases that cause greenhouse gas emissions in the atmosphere. Because of its inert in the atmosphere, the catalyst is needed to help CO2 react with other compounds. In this research, hierarchical ZSM-5 was prepared from natural minerals as sources, which is natural zeolite Bayat and Bangka kaolin then impregnated with bimetallic Ni-Zn as a catalyst to convert CO2 with support of acetylene to produce acrylic acid. Hierarchical zeolite ZSM-5 was synthesized using double template method, with TPAOH as its primary template that directed to MFI framework and PDDA-M as its secondary template that directed mesoporous structure. Impregnation of nickel (Ni) and zinc (Zn) bimetallic was conducted by co-impregnation method followed by reduction H2 gas flow. Material characterization of natural ZSM-5 hierarchy and NiZn/ZSM-5 hierarchy were conducted FTIR, XRD, XRF, and SEM-EDS. FTIR analysis shows that there has been a decomposition of templates through calcination. XRD analysis showed that the crystallinity of the ZSM-5 hierarchy was synthesized successfully. SEM analysis shows the morphology of the material with the coffin like-shaped which is characteristic of the ZSM-5. The EDS analysis shows percent loading of Ni and Zn in ZSM-5 are 6.38% and 3.23%. The acetylene carboxylation reaction with CO2 was carried out in a batch reactor with pressure variations 1.5 bar, 2.5 bar, and 3.5 bar. The products formed were analyzed by HPLC and GCMS. HPLC analysis shows a new peak at a retention time of 3,625 minutes. The optimum condition was obtained at 2.5 bar and the value is 302.836 mAU. So, it shows do not contain acrylic acid in the product."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Faisal
"ZSM-5 telah berhasil disintesis melalui metode hidrotermal dari mineral alam zeolit alam Bayat dan kaolin Bangka sebagai sumber alumina dan silika, TPAOH sebagai agen pengarah struktur MFI dan PDDA-M sebagai pengarah mesopori. ZSM-5 kemudian dimodifikasi permukaannya dengan oksida logam Fe dan Co melalui metode impregnasi basah untuk meningkatkan aktivitas katalitiknya pada reaksi oksidasi parsial metana. Modifikasi dengan oksida logam ini juga dilakukan untuk ZSM-5 sintetik sebagai pembanding dalam aktivitas katalitiknya. ZSM-5 alam dan ZSM-5 sintetik termodifikasi oksida logam dikarakterisasi dengan instrumen FTIR, XRD, SEM-EDX, surface area analyzer dan XPS untuk mengetahui pengaruh modifikasi permukaan terhadap struktur, morfologi dan aktivitas katalitiknya. Analisis komposisi unsur dari ZSM-5 alam terimpregnasi oksida Fe dan Co menunjukkan % loading Fe dan Co berturut-turut sebesar 2,37% dan 1,78%. Hasil pengujian isoterm adsorpsi menunjukkan baik ZSM-5 alam maupun ZSM-5 alam terimpregnasi oksida logam Fe dan Co memiliki kurva tipe IV H4 yang merupakan kurva ciri khas material berpori hirarki. Analisis XPS menunjukkan spesi oksida logam Fe dan Co yang menempel pada ZSM-5 berturut-turut adalah Fe2O3 dan Co3O4. Hasil uji analisis kandungan gas menggunakan GC-TCD menunjukkan berkurangnya mol metana setelah reaksi yang menandakan metana telah terkonversi menjadi metanol dan formaldehida yang terlihat dari puncak kromatogram GC-FID. Hasil analisis produk dengan GC-FID menunjukkan reaksi oksidasi parsial metana menggunakan Fe/ZSM-5 menghasilkan formaldehida dan menggunakan Co/ZSM-5 menghasilkan metanol dan formaldehida.
......ZSM-5 has been successfully synthesized through hydrothermal method using Bangka Kaolin and Bayat Natural Zeolite as the precursors, TPAOH as MFI-structure directing agent; PDDA-M as mesopore directing agent. Furthermore, the surface of ZSM-5 was impregnated with metal oxide of Fe and Co to improve its catalytic performance through partial oxidation of methane reaction. As comparison, ZSM-5 synthesized from pro analysis precursors was also impregnated with metal oxide of Fe and Co and tested through the reaction. Metal oxide of Fe and Co impregnated ZSM-5 were characterized with XRD, SEM-EDS, XPS and SAA-BET instruments to see the effect of impregnation to the structure and characteristic of both materials. Analysis of the elemental composition of Fe/ and Co/ZSM-5 was 2,37% and 1,78% respectively. The N2 isotherm adsorption curve shows a type IV H4 indicates that the materials has hierarchical characteristic. XPS analysis show the Fe and Co oxide that impregnated to ZSM-5 is Fe2O3 and Co3O4. GC-TCD analysis show there is a decreases of methane mol after reaction indicates that the methane has been converted. GC-FID analysis show that the partial oxidation of methane using Fe/ZSM-5 yielded formaldehyde whereas for Co/ZSM-5 yielded methanol and formaldehyde."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T54844
UI - Tesis Membership  Universitas Indonesia Library
cover
Nirwan Susianto
"[Pada penelitian ini telah dilakukan studi spektroskopi dari zeolit ZSM-5 mesopori terimpregnasi oksida kobalt secara komprehensif. Co/ZSM-5 mesopori telah menarik perhatian para peneliti untuk digunakan sebagai katalis heterogen dalam reaksi oksidasi parsial metana. Dalam penelitian ini dilakukan sintesis zeolit NaZSM-5 mesopori dengan metode double template dengan TPAOH sebagai agen pengarah struktur dan PDDA sebagai template mesopori. Sebagian zeolit NaZSM-5 dimodifikasi menjadi HZSM-5 melalui proses tukar kation dengan NH4+ yang dilanjutkan dengan kalsinasi pada suhu 550°C. Selanjutnya, zeolit NaZSM-5 dan HZSM-5 diimpregnasi dengan ion kobalt dan dikalsinasi pada 550°C membentuk Co/NaZSM-5 dan Co/HZSM-5. Lalu, zeolit mesopori NaZSM-5, HZSM-5, Co/NaZSM-5, dan Co/HZSM-5 dikarakterisasi secara ekstensif dengan XRD, SEM, AAS, FTIR, 27Al Solid State NMR, Microbalance, dan Surface Area and Pore Size Analyzer untuk menjelaskan pengaruh perbedaan sifat permukaan zeolit katalis terhadap fenomena perbedaan hasil reaksi katalisis oksidasi parsial metana dengan oksidator oksigen dan katalis zeolit mesopori Co/NaZSM-5 dan Co/HZSM-5 pada penelitian sebelumnya, di mana persen konversi metana menjadi metanol meningkat seiring dengan waktu pada Co/HZSM-5 namun sebaliknya pada Co/NaZSM-5 justru menurun seiring dengan waktu. Hasil analisis menunjukkan bawa keasaman zeolit ZSM-5 sebagai support katalis berpengaruh terhadap loading Co dan aktivitas katalis.
......Spectroscopy study of mesoporous ZSM-5 zeolite impregnated with cobalt oxides has been done comprehensively. Mesoporous Co/ZSM-5 has gained the researchers’ attention for being used as heterogeneous catalyst for partial oxidation of methane. In this research, mesoporous NaZSM-5 zeolite was synthesized by using double template method with TPAOH as structure directing agent (SDA) and PDDA as mesoporous template. Some of NaZSM-5 were modified to HZSM-5 through NH4+-exchange process followed by calcination at 550°C. NaZSM-5 and HZSM-5 zeolite were impregnated with cobalt ions and calcined at 550°C to form Co/NaZSM-5 and Co/HZSM-5. Then, mesoporous NaZSM-5, HZSM-5, Co/NaZSM-5, and Co/HZSM-5 zeolite were extensively characterized using XRD, SEM, AAS, FTIR, 27Al Solid Sate NMR, Microbalance and Surface Area and Pore Size Analyzer to explain zeolite surface characteristics influence on difference results from methane partial oxidation with O2 as oxidant using mesoporous Co/NaZSM-5 and Co/HZSM-5 zeolite as catalyst in recent research. In which by using Co/HZSM-5 as catalyst %conversion of methane to methanol increase by the time, but %conversion decrease by using Co/NaZSM-5. By analysis, it can be concluded that ZSM-5 zeolite’s acidity affect the loading of Co and catalyst activity.;Spectroscopy study of mesoporous ZSM-5 zeolite impregnated with cobalt oxides has been done comprehensively. Mesoporous Co/ZSM-5 has gained the researchers’ attention for being used as heterogeneous catalyst for partial oxidation of methane. In this research, mesoporous NaZSM-5 zeolite was synthesized by using double template method with TPAOH as structure directing agent (SDA) and PDDA as mesoporous template. Some of NaZSM-5 were modified to HZSM-5 through NH4+-exchange process followed by calcination at 550°C. NaZSM-5 and HZSM-5 zeolite were impregnated with cobalt ions and calcined at 550°C to form Co/NaZSM-5 and Co/HZSM-5. Then, mesoporous NaZSM-5, HZSM-5, Co/NaZSM-5, and Co/HZSM-5 zeolite were extensively characterized using XRD, SEM, AAS, FTIR, 27Al Solid Sate NMR, Microbalance and Surface Area and Pore Size Analyzer to explain zeolite surface characteristics influence on difference results from methane partial oxidation with O2 as oxidant using mesoporous Co/NaZSM-5 and Co/HZSM-5 zeolite as catalyst in recent research. In which by using Co/HZSM-5 as catalyst %conversion of methane to methanol increase by the time, but %conversion decrease by using Co/NaZSM-5. By analysis, it can be concluded that ZSM-5 zeolite’s acidity affect the loading of Co and catalyst activity.;Spectroscopy study of mesoporous ZSM-5 zeolite impregnated with cobalt oxides has been done comprehensively. Mesoporous Co/ZSM-5 has gained the researchers’ attention for being used as heterogeneous catalyst for partial oxidation of methane. In this research, mesoporous NaZSM-5 zeolite was synthesized by using double template method with TPAOH as structure directing agent (SDA) and PDDA as mesoporous template. Some of NaZSM-5 were modified to HZSM-5 through NH4+-exchange process followed by calcination at 550°C. NaZSM-5 and HZSM-5 zeolite were impregnated with cobalt ions and calcined at 550°C to form Co/NaZSM-5 and Co/HZSM-5. Then, mesoporous NaZSM-5, HZSM-5, Co/NaZSM-5, and Co/HZSM-5 zeolite were extensively characterized using XRD, SEM, AAS, FTIR, 27Al Solid Sate NMR, Microbalance and Surface Area and Pore Size Analyzer to explain zeolite surface characteristics influence on difference results from methane partial oxidation with O2 as oxidant using mesoporous Co/NaZSM-5 and Co/HZSM-5 zeolite as catalyst in recent research. In which by using Co/HZSM-5 as catalyst %conversion of methane to methanol increase by the time, but %conversion decrease by using Co/NaZSM-5. By analysis, it can be concluded that ZSM-5 zeolite’s acidity affect the loading of Co and catalyst activity.;Spectroscopy study of mesoporous ZSM-5 zeolite impregnated with cobalt oxides has been done comprehensively. Mesoporous Co/ZSM-5 has gained the researchers’ attention for being used as heterogeneous catalyst for partial oxidation of methane. In this research, mesoporous NaZSM-5 zeolite was synthesized by using double template method with TPAOH as structure directing agent (SDA) and PDDA as mesoporous template. Some of NaZSM-5 were modified to HZSM-5 through NH4+-exchange process followed by calcination at 550°C. NaZSM-5 and HZSM-5 zeolite were impregnated with cobalt ions and calcined at 550°C to form Co/NaZSM-5 and Co/HZSM-5. Then, mesoporous NaZSM-5, HZSM-5, Co/NaZSM-5, and Co/HZSM-5 zeolite were extensively characterized using XRD, SEM, AAS, FTIR, 27Al Solid Sate NMR, Microbalance and Surface Area and Pore Size Analyzer to explain zeolite surface characteristics influence on difference results from methane partial oxidation with O2 as oxidant using mesoporous Co/NaZSM-5 and Co/HZSM-5 zeolite as catalyst in recent research. In which by using Co/HZSM-5 as catalyst %conversion of methane to methanol increase by the time, but %conversion decrease by using Co/NaZSM-5. By analysis, it can be concluded that ZSM-5 zeolite’s acidity affect the loading of Co and catalyst activity., Spectroscopy study of mesoporous ZSM-5 zeolite impregnated with cobalt oxides has been done comprehensively. Mesoporous Co/ZSM-5 has gained the researchers’ attention for being used as heterogeneous catalyst for partial oxidation of methane. In this research, mesoporous NaZSM-5 zeolite was synthesized by using double template method with TPAOH as structure directing agent (SDA) and PDDA as mesoporous template. Some of NaZSM-5 were modified to HZSM-5 through NH4+-exchange process followed by calcination at 550°C. NaZSM-5 and HZSM-5 zeolite were impregnated with cobalt ions and calcined at 550°C to form Co/NaZSM-5 and Co/HZSM-5. Then, mesoporous NaZSM-5, HZSM-5, Co/NaZSM-5, and Co/HZSM-5 zeolite were extensively characterized using XRD, SEM, AAS, FTIR, 27Al Solid Sate NMR, Microbalance and Surface Area and Pore Size Analyzer to explain zeolite surface characteristics influence on difference results from methane partial oxidation with O2 as oxidant using mesoporous Co/NaZSM-5 and Co/HZSM-5 zeolite as catalyst in recent research. In which by using Co/HZSM-5 as catalyst %conversion of methane to methanol increase by the time, but %conversion decrease by using Co/NaZSM-5. By analysis, it can be concluded that ZSM-5 zeolite’s acidity affect the loading of Co and catalyst activity.]"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S57909
UI - Skripsi Membership  Universitas Indonesia Library