Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Muhammad Okky Ibrohim
"ABSTRAK
Penyebaran ujaran kebencian dan ujaran kasar di media sosial merupakan hal yang harus diidentifikasi secara otomatis untuk mencegah terjadinya konflik masyarakat. Selain itu, ujaran kebencian mempunyai target, golongan, dan tingkat tersendiri yang juga perlu diidentifikasi untuk membantu pihak berwenang dalam memprioritaskan kasus ujaran kebencian yang harus segera ditangani. Tesis ini membahas klasifikasi teks multi label untuk mengidentifikasi ujaran kasar dan ujaran kebencian disertai identifikasi target, golongan, dan tingkatan ujaran kebencian pada Twitter berbahasa Indonesia. Permasalahan ini diselesaikan menggunakan pendekatan machine learning menggunakan algoritma klasifikasi Support Vector Machine (SVM), Naïve Bayes (NB), dan Random Forest Decision Tree (RFDT) dengan metode transformasi data Binary Relevance (BR), Label Power-set (LP), dan Classifier Chains (CC). Jenis fitur yang digunakan antara lain fitur frekuensi term (word n-grams dan character n-grams), fitur ortografi (tanda seru, tanda tanya, huruf besar/kapital, dan huruf kecil), dan fitur leksikon (leksikon sentimen negatif, leksikon sentimen positif, dan leksikon kasar). Hasil eksperimen menunjukkan bahwa secara umum algoritma klasifikasi RFDT dengan metode transformasi LP memberikan akurasi yang terbaik dengan waktu komputasi yang cepat. Algoritma klasifikasi RFDT dengan metode transformasi LP menggunakan fitur word unigram memberikan akurasi sebesar 66,16%. Jika hanya mengidentifikasi ujaran kasar dan ujaran kebencian (tanpa disertai identifikasi target, golongan, dan tingkatan ujaran kebencian), algoritma klasifikasi RFDT dengan metode transformasi LP menggunakan gabungan fitur word unigram, character quadgrams, leksikon sentimen positif, dan leksikon kasar mampu memberikan akurasi sebesar 77,36%.


Hate speech and abusive language spreading on social media needs to be identified automatically to avoid conflict between citizen. Moreover, hate speech has target, criteria, and level that also needs to be identified to help the authority in prioritizing hate speech which must be addressed immediately. This thesis discusses multi-label text classification to identify abusive and hate speech including the target, category, and level of hate speech in Indonesian Twitter. This problem was done using machine learning approach with Support Vector Machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) classifier and Binary Relevance (BR), Label Power-set (LP), and Classifier Chains (CC) as data transformation method. The features that used are term frequency (word n-grams and character n-grams), ortography (exclamation mark, question mark, uppercase, lowercase), and lexicon features (negative sentiment lexicon, positif sentiment lexicon, and abusive lexicon). The experiment results show that in general RFDT classifier using LP as the transformation method gives the best accuracy with fast computational time. RFDT classifier with LP transformation using word unigram feature give 66.16% of accuracy. If only for identifying abusive language and hate speech (without identifying the target, criteria, and level of hate speech), RFDT classifier with LP transformation using combined fitur word unigram, character quadgrams, positive sentiment lexicon, and abusive lexicon can gives 77,36% of accuracy.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
T52442
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohammad Rizky Adrian
"Salah satu upaya pengendalian konten negatif media sosial seperti ujaran kebencian dan ujaran kasar adalah dengan mengotomasi proses filter dari konten media sosial. Dalam konteks COVID19, proses otomasi ini dapat dimanfaatkan oleh KOMINFO, virtual police, satuan tugas COVID19, ataupun para akademisi. Data dikumpulkan dari Twitter selama bulan Mei sampai Juni 2021. Penelitian memanfaatkan korpus dari penelitian terdahulu untuk mengetahui apakah pengetahuan dari penelitian terdahulu dapat digunakan pada domain COVID19. Dataset dievaluasi menggunakan algoritma Support Vector Machine (SVM), Naïve Bayes, Random Forest Decision Tree (RFDT), Logistic Regression, dan ADABoost, dengan variasi SMOTE dan undersampling. Unigram-bigram kata digunakan sebagai fitur dikombinasikan dengan fitur lexicon dan orthogonal, serta diekstraksi menggunakan Term Frequency-Inverse Document Frequency dan Count Vectorizer. Hasil anotasi menunjukkan perbandingan data imbalance sebesar 1:73 untuk ujaran kebencian dan 1:24 untuk ujaran kasar. Evaluasi dari hasil penelitian menunjukkan bahwa pemanfaatan model klasifikasi dari penelitian terdahulu (2019) dikombinasikan dengan dataset COVID19 memiliki nilai recall dan F1 klasifikasi ujaran kebencian (nilai recall 69.23%) dan ujaran kasar (nilai recall 71.3%) yang lebih baik. Algoritma pembangun model terbaik didominasi oleh algoritma SVM dan ADABoost. Hasil dari penelitian perlu ditindaklanjuti agar dapat dirasakan manfaatnya secara langsung, misalnya dengan membungkus model klasifikasi pada API (application programmable interface).

One of the efforts to control negative aspect of social media like hate speech and abusive language is by automating the filtering process of content on social media. In the context of COVID19, KOMINFO, the virtual police, the COVID19 task force, or academics can benefit from this solution. Data was collected from Twitter in the period of May to June 2021. The study utilizes the corpus from previous studies to find out whether previous research knowledge can be used in the COVID19 domain. The COVID19 dataset uses the Support Vector Machine (SVM), Naïve Bayes, Random Forest Decision Tree (RFDT), Logistic Regression, and ADABoost algorithms, with variations of data imbalances handling (SMOTE and undersampling). Unigram-bigram words, lexicon, and orthogonal are used as features extracted by TF-IDF and Count Vectorizer. The annotation results show a comparison of the imbalanced data of 1:73 for hate speech and 1:24 for abusive language in COVID19 dataset. Results of the study shows that the use of the classification model from previous studies (2019) combined with the COVID19 dataset has a better recall value and F1 classification of hate speech (with recall score of 69.23%) and abusive language (with recall score of 71.3%). The best classifier models mostly built using SVM and ADABoost. The results of this research need to be followed up so that they can be used directly, for example by wrapping the best classifier model on API (application programmable interface)."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Alif Mahardhika
"Ujaran kasar dan ujaran kebencian telah menjadi fenomena yang banyak ditemukan di media sosial. Penyalahgunaan kebebasan berpendapat ini berpotensi memicu terjadinya konflik dan ketidakstabilan sosial dikalangan masyarakat, baik dalam interaksi sosial secara digital maupun secara fisik. Diperlukan upaya identifikasi ujaran kasar dan ujaran kebencian secara otomatis, akurat, dan efisien untuk mempermudah penegakkan hukum oleh pihak berwenang. Penelitian pada skripsi ini melakukan perbandingan performa klasifikasi ujaran kasar dan ujaran kebencian pada data teks mixed-coded berbahasa Indonesia-Jawa, menggunakan model klasifikasi berbasis BERT. Eksperimen perbandingan dilakukan dengan membandingkan pre-trained model berbasis BERT dengan berbagai arsitektur dan jenis berbeda, yaitu BERT (dengan arsitektur base dan large), RoBERTa (arsitektur base), dan DistilBERT (arsitektur base). Untuk mengatasi keterbatasan mesin dalam memahami teks mixed-coded, penelitian ini dirancang dalam dua skenario yang membandingkan performa klasifikasi pada teks mixed-coded Indonesia-Jawa dan teks mixed coded yang diterjemahkan ke Bahasa Indonesia. Hasil terbaik berdasarkan F1-Score didapatkan pada klasifikasi menggunakan model berbasis BERT dengan nama IndoBERT-large-p2 pada kedua skenario, dengan F1-Score 78,86% pada skenario tanpa proses translasi, dan F1-Score 77,22% pada skenario dengan proses translasi ke Bahasa Indonesia.

Hateful and abusive speech has become a phenomenon that becomes common in social media. This abuse of freedom of speech presents significant risk of starting social conflicts, be it in the form of digital or physical social interactions. An accurate, efficient, and automated hate speech and abusive language identification effort needs to be developed to help authorities address this problem properly. This research conducts a comparison on hate speech and abusive language identification using several BERT-based language models. The comparisons are made using a variety of BERT-based language models with different types and architecture, including BERT (base and large architecture), RoBERTa (base architecture), and DistilBERT (base architecture). To address the mixed-coded nature of social media texts, this research was conducted under two different scenario that compares the classification performance using a mixed-coded Indonesian-Javanese text and texts that have been translated to Indonesian. The best classification output was measured using F1-Score, with a BERT-based model named IndoBERT-large-p2 outscoring the other BERT-based models in both scenario, scoring an F1-Score of 78.86% in untranslated scenario, and 72.22% F1-Score on the Indonesian-translated scenario."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library