Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Made Wira Dhanar Santika
"Lingkar kepala janin merupakan salah satu biometrik paling penting dalam pemeriksaan perkembangan janin dengan menggunakan alat USG. Akan tetapi, pengukuran terhadap kepala janin bukanlah pekerjaan yang mudah. Penelitian ini bertujuan untuk membuat sistem pengukuran kepala janin otomatis. Sistem ini diharapkan dapat berjalan pada perangkat mobile sebagai bagian dari sistem telehealth. Pengukuran kepala janin pada penelitian ini dilakukan dengan metode object detection, dilanjutkan dengan Canny edge detection, lalu untuk piksel pada citra edge kemudian diproses pada tahap ellipse fitting. Evaluasi dilakukan dengan menggunakan metrik akurasi, presisi, recall, dan f1-score untuk metode object detection, dan error rate untuk ellipse fitting. Dari setiap metode yang dilakukan uji coba, hasil evaluasi menunjukan bahwa metode Adaptive Boosting dan ElliFit memiliki performa yang paling baik. Metode ini juga memiliki waktu eksekusi yang relatif cepat untuk sebuah perangkat mobile, yaitu 3-5 detik.

Fetal head circumference (HC) is one of the most important biometrics in assessing fetal growth during prenatal ultrasound examinations. However, measuring the fetal head is not an easy task. This study aims to create an automatic fetal head measurement system. This system is expected to run on mobile devices as part of telehealth system. HC measurement can be done with object detection method, followed by Canny edge detection, then for every edge pixels, fetal head can be approximated using ellipse fitting. Evaluations are carried out using accuracy, precision, recall, and f1-score metrics for object detection methods, and error rates for ellipse fitting. From each method that was tested, the evaluation result showed that the Adaptive Boosting and ElliFit method had the best performance. This method also had a relatively fast execution time for a mobile device, which is 3-5 seconds."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadil Ramadhani Darmastowo
"Daerah ekuator memiliki curah hujan yang tinggi karena terletak di dekat garis khatulistiwa, dimana matahari menghasilkan energi yang sangat tinggi sepanjang tahun. Ini berdampak pada habitat biologis, siklus air global, dan kehidupan sehari- hari manusia. Informasi curah hujan yang akurat penting untuk mitigasi bencana, pengelolaan sumber daya udara, dan pemodelan iklim. Pengukuran terhadap curah hujan dalapat dilakukan dengan berbagai metode, salah satunya dengan menggunakan metode jarak jauh yaitu radar (Radio Detecting and Ranging). Pada studi ini, dilakukan perhitungan radar cuara dengan menggunakan machine learning untuk mengkaji keakuratan perhitungan data radar cuaca terhadap nilai estimasi curah hujan di Pontianak. Produk dari radar cuaca merupakan data reflektifitas (Z). Penggunaan machine learning ini diterapkan pada data reflektifitas radar cuaca dimana data yang digunakan adalah C-MAX atau Column Maximum. Data curah hujan pada periode Desember 2021 sampai Februari 2022 di Pontianak diolah dengan metode perbandingan menggunakan empat algoritma tree-based machine learning: Decision Tree, Random Forest, Adaptive Boosting, dan Gradient Boosting. Perbandingan ini bertujuan untuk mendapatkan nilai estimasi curah hujan. Algoritma Decision Tree menghasilkan nilai akurasi RMSE sebesar 0,693 dan korelasi R2 sebesar 0,449; Random Forest menghasilkan RMSE 0,642 dan R2 0,527; Adaptive Boosting menghasilkan RMSE sebesar 0,725 dan R2 sebesar 0,395, serta Gradient Boosting menghasilkan RMSE sebesar 0,561 dan R2 sebesar 0,638. Disimpulkan bahwa algoritma Gradient Boosting dapat memberikan estimasi curah hujan terbaik di Pontianak, Kalimantan Barat, Indonesia.

Equatorial regions have high rainfall because they are located near the equator, where the sun produces very high energy throughout the year. This impacts biological habitats, the global water cycle, and people's daily lives. Accurate rainfall information is vital for disaster mitigation, air resource management, and climate modeling. Rainfall can be measured using various methods, one of which is a long- range method, namely radar (Radio Detecting and Ranging). In this study, weather radar calculations were carried out using machine learning to assess the accuracy of weather radar data calculations on estimated rainfall values in Pontianak. The product of weather radar is reflectivity data (Z). Machine learning is applied to weather radar reflectivity data where the data used is C-MAX or Column Maximum. Rainfall data from December 2021 to February 2022 in Pontianak was processed utilizing a comparative method using four tree-based machine learning algorithms: Decision Tree, Random Forest, Adaptive Boosting, and Gradient Boosting. This comparison aims to obtain estimated rainfall values. The Decision Tree algorithm produces an RMSE accuracy value of 0.693 and an R2 correlation of 0.449; Random Forest produces an RMSE of 0.642 and R2 0.527; Adaptive Boosting produces an RMSE of 0.725 and R2 of 0.395, and Gradient Boosting has an RMSE of 0.561 and an R2 of 0.638. It was concluded that the Gradient Boosting algorithm can provide the best rainfall estimates in Pontianak, West Kalimantan, Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bernadeta Nafirsta Ayu Nareswari
"Curah hujan merupakan unsur iklim yang memiliki keragaman dan fluktuasi yang tinggi di Indonesia. Hal ini membuat curah hujan merupakan unsur iklim yang paling dominan untuk mencirikan iklim di Indonesia. Berdasarkan gerakan udara naik untuk membentuk awan, terdapat tiga tipe hujan yaitu konvektif, orografik, dan gangguan. Pengukuran terhadap curah hujan dapat dilakukan dalam berbagai metode, salah satunya dengan menggunakan pengukuran jarak jauh yaitu radar (Radio Detecting and Ranging). Pada studi ini dilakukan perhitungan radar cuaca dengan menggunakan machine learninguntuk mengkaji keakuratan perhitungan data radar cuaca terhadap estimasi curah hujan di Pulau Biak, Indonesia. Produk dari radar cuaca merupakan data reflektifitas (Z). Penggunaan machine learning ini diterapkan pada data reflektifitas radar cuaca dimana data yang digunakan adalah C-MAX atau Column Maximum. Data curah hujan pada periode Desember 2021 sampai Februari 2022 di Kabupaten Biak diolah menggunakan algoritma yang berbeda, yaitu Decision Tree, Random Forest, Adaptive Boosting, Gradient Boosting Extreme Gradient Boosting. Hasil dari studi ini akan menunjukkan algoritma terbaik yang dapat digunakan untuk memprediksi estimasi curah hujan konvektif di Pulau Biak, Indonesia. Berdasarkan penelitian yang sudah dilakukan, didapatkan hasil R2 pada algoritma Decision Tree sebesar 0,70; Random Forest 0,60; Adaptive Boosting sebesar 0,42; Gradient Boosting sebesar 0,71 dan Extreme Gradient Boosting sebesar 0,73. Hasil analisis menunjukkan bahwa algoritma Extreme Gradient Boosting dapat memberikan estimasi curah hujan paling baik di Pulau Biak, Indonesia.

Rainfall is an element of climate with high diversity and fluctuation in Indonesia. This makes rainfall the most dominant climate element to characterize the climate in Indonesia. Based on the movement of rising air to form clouds, there are three types of rain: convective, orographic, and disturbance. Rainfall can be measured in various methods, one of which is by using remote measurement, namely radar (Radio Detecting and Ranging). In this study, weather radar calculations were carried out using machine learning to assess the accuracy of weather radar data calculations on the estimated rainfall value on Biak Island, Indonesia. The product of weather radar is reflectivity (Z) data. The use of machine learning is applied to weather radar reflectivity data where the data used is C-MAX or Column Maximum. Rainfall data from December 2021 to February 2022 in Biak Regency is processed using five different algorithms: Decision Tree, Random Forest, Adaptive Boosting, Gradient Boosting, and Extreme Gradient Boosting. The result of this study will show the best algorithm that can be used to predict convective rainfall estimation in Biak Island, Indonesia. Based on the research that has been done, the R2 results obtained on the Decision Tree algorithm of 0.70; Random Forest 0.60; Adaptive Boosting of 0.42; Gradient Boosting of 0.71 and Extreme Gradient Boosting of 0.73. The analysis shows that the Extreme Gradient Boosting algorithm can estimate the best rainfall in Biak Island, Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library