Herardita Cahyaning Wulan
Abstrak :
Age-related macular degeneration (AMD) adalah penyakit degeneratif pada makula yang menyebabkan gangguan penglihatan sentral pada orang lanjut usia. Secara global, orang yang didiagnosis mengalami AMD mencapai 170 juta orang. Pada 2018, AMD menjadi penyebab kebutaan terbesar ketiga di Indonesia, setelah katarak dan gangguan refraksi. Salah satu pendekatan teknologi dalam bidang kedokteran adalah menggunakan sains data dan deep learning untuk mendeteksi dan mendiagnosis penyakit mata. Salah satu metode deep learning yang paling efektif untuk memahami data berbasis citra adalah Convolutionl Neural Network (CNN). Di antara arsitektur CNN yang dikembangkan, arsitektur EfficientNet merupakan salah satu yang paling efektif untuk mencapai akurasi terbaik pada tugas klasifikasi gambar serta efisien secara komputasional. Data yang digunakan dalam penelitian ini adalah data citra fundus retina yang bersumber dari empat open source database. Terdapat dua kelas yang akan diklasifikasi yaitu Normal dan AMD. Dengan penggabungan beberapa dataset muncul beberapa masalah yaitu terdapat perbedaan dimensi dan kontras pada citra. Sebelum dataset digunakan untuk melatih model, dilakukan preprocessing dengan centered crop, resize, dan Contrast Limited Adaptive Histogram Equalization (CLAHE). Masalah lain yang muncul adalah ukuran dataset yang kecil karena sulitnya mendapatkan data medis pasien. Salah satu metode yang dapat menjadi solusi adalah Generative Adversarial Network (GAN) yang digunakan untuk menghasilkan data citra sintetis. Penelitian ini diajukan untuk menerapkan metode GAN guna meningkatkan kinerja model EfficientNet dalam mendeteksi AMD. Untuk melakukan hal tersebut dibuat tiga skenario untuk membandingkan kinerja EfficientNet. Skenario A yaitu melakukan klasifikasi dengan dataset asli, tanpa preprocessing CLAHE dan tanpa augmentasi GAN. Skenario B melakukan klasifikasi dengan dataset yang sudah diaugmentasi dengan GAN. Sedangkan, skenario C melakukan klasifikasi dengan dataset yang diaugmentasi dengan GAN dan melalui preprocessing CLAHE. Metrik evaluasi yang digunakan untuk mengukukur kinerja adalah akurasi, sensitivity, dan specifity. Pada skenario A dengan rasio splitting data 70:15:15 dan 80:10:10 didapat rata-rata akurasi sebesar 89,01% dan 88,52%. Sedangkan, pada skenario B dengan rasio 70:15:15 dan 80:10:10 didapat rata-rata akurasi sebesar 87,10% dan 89,86%. Pada Skenario C dengan rasio 70:15:15 dan 80:10:10 didapat rata-rata akurasi sebesar 88,97% dan 91,27%. Skenario terbaik adalah skenario C dengan rasio 80:10:10 dengan nilai akurasi tertinggi 92,96%, sensitivity tertinggi mencapai 93,55%, dan specifity tertinggi mencapai 95,00%.
......Age-related macular degeneration (AMD) is a degenerative disease of the macula that causes central vision impairment in the elderly. Globally, the number of people diagnosed with AMD reaches 170 million. In 2018, AMD became the third leading cause of blindness in Indonesia, following cataracts and refractive errors. One technological approach in the field of medicine is utilizing data science and deep learning to detect and diagnose eye diseases. One of the most effective deep learning methods for understanding image-based data is the Convolutional Neural Network (CNN). Among the developed CNN architectures, EfficientNet is one of the most effective in achieving the best accuracy in image classification tasks while being computationally efficient. The data used in this research consists of fundus retinal images sourced from four open source databases. There are two classes: Normal and AMD. Combining multiple datasets presents several issues, such as differences in image dimensions and contrast. Before the dataset is used to train the model, preprocessing is conducted using centered crop, resize, and Contrast Limited Adaptive Histogram Equalization (CLAHE). Another emerging issue is the small dataset size due to the difficulty of obtaining patient medical data. One method that can provide a solution is the Generative Adversarial Network (GAN), which is used to generate synthetic image data. This study proposes to implement GAN to enhance the performance of the EfficientNet model in detecting AMD. To achieve this, three scenarios were created to compare the performance of EfficientNet. Scenario A involves classification with the original dataset, without CLAHE preprocessing and without GAN augmentation. Scenario B involves classification with the dataset augmented by GAN. Scenario C involves classification with the dataset augmented by GAN and processed through CLAHE preprocessing. The evaluation metrics used to measure performance are accuracy, sensitivity, and specificity. In Scenario A, with data splitting ratios of 70:15:15 and 80:10:10, the average accuracy obtained was 89.01% and 88.52%, respectively. In Scenario B, with the same data splitting ratios, the average accuracy obtained was 87.10% and 89.86%, respectively. In Scenario C, with data splitting ratios of 70:15:15 and 80:10:10, the average accuracy obtained was 88.97% and 91.27%, respectively. The best scenario is Scenario C with a ratio of 80:10:10, achieving the highest accuracy of 92.96%, the highest sensitivity of 93.55%, and the highest specificity of 95.00%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library