Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Abstrak :
Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inference, learn the latest practical techniques for investigating system security and performing robust data analysis, and gain insight into new approaches for designing effective countermeasures against the latest wave of cyber-attacks. Privacy-preserving mechanisms and the near-optimal evasion of classifiers are discussed in detail, and in-depth case studies on email spam and network security highlight successful attacks on traditional machine learning algorithms. Providing a thorough overview of the current state of the art in the field, and possible future directions, this groundbreaking work is essential reading for researchers, practitioners and students in computer security and machine learning, and those wanting to learn about the next stage of the cybersecurity arms race.
Cambridge: Cambridge University Press, 2019
006.31 ADV
Buku Teks  Universitas Indonesia Library
cover
Jonathan Elloy S
Abstrak :
Barcode merupakan kumpulan data optik yang dapat dimengerti sebuah mesin dan memiliki fungsi yang sangat luas, sebagai contoh adalah karcis parkir kendaraan. Karcis parkir merupakan penanda sebuah kendaraan agar bisa keluar dan masuk ke dalam parkiran tersebut. Kendaraan dapat keluar dari area parkir dengan memindai barcode yang tertera pada karcis parkir. Namun, seringkali karcis parkir memiliki kerusakan yang menyebabkan barcode yang tertera sulit terbaca dengan alat pemindaian dan kendaraan tidak dapat keluar dari area parkir. Kerusakan bisa disebabkan karena kelalaian manusia (terkena air yang menyebabkan karcis basah, atau terlipat-lipat sehingga lecek) dan juga kesalahan pencetak. Untuk menanggulangi permasalahan tersebut, sistem pembacaan barcode karcis parkir dikembangankan. Sistem tersebut menggunakan Autoencoder dan Conditional Generative Adversarial Network (CGAN) dalam merekonstruksi barcode. Barcode dikatakan berhasil direkonstruksi bila decoder (pyzxing dan pyzbar) dapat decoding gambar barcode rekonstruksi tersebut. Penelitian ini menunjukan bahwa model CGAN mampu merekonstruksi karcis parkir dunia nyata dengan true recognition rate 16% tanpa super resolution, sedangkan untuk model autoencoder masih belum mampu untuk merekonstruksi barcode dengan baik. Dengan super resolution, performa kedua model menurun dalam merekonstruksi barcode. CGAN juga lebih baik dibandingkan dengan autoencoder dalam rekonstruksi barcode generated dengan 1x augmentasi. Dengan menggunakan pyzxing decoder, Autoencoder mampu merekonstruksi barcode yang tidak terbaca dengan true recognition rate sebesar 95,50% dan CGAN mampu menghasilkan true recognition sebesar 97% dengan durasi prediksi rata-rata autoencoder 0,17 detik dibandingkan dengan CGAN 0,672 detik per 1 gambar. ......Barcode is a collection of optical data that can be scanned by a machine and has a broad function, such as a vehicle parking ticket. A parking ticket is a marker for a vehicle to enter and exit the parking lot. Vehicles can exit the parking area by scanning the barcode printed on the parking ticket. However, parking tickets often have damage that cause the barcodes printed are difficult to be scanned and the vehicle cannot exit parking area. Damage can be caused by human error (wet tickets, or it folds up so that it becomes wrinkled) as well as printer error. To overcome this problem, a parking ticket barcode reconstruction system was developed. The system uses Autoencoder and Conditional Generative Adversarial Network (CGAN) in reconstructing barcodes. The barcode is said to be reconstructed successfully if the decoders (pyzxing and pyzbar) can decode the reconstructed barcode image. This paper shows that the CGAN model can reconstruct real-world parking tickets with a true recognition rate of 16% without super resolution, while the autoencoder model is still unable to reconstruct barcodes properly. With super resolution, the performance of both models decreases in reconstructing barcodes. CGAN is better than autoencoder in reconstructing barcode generated with 1x augmentation. Using the pyzxing decoder, Autoencoder can reconstruct unreadable barcodes with a true recognition rate of 95.50% and CGAN is able to produce true recognition of 97% with an average autoencoder prediction duration of 0.17 seconds compared to CGAN of 0.672 seconds per 1 image.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nathaniel Faustine
Abstrak :
Sampai saat ini, sketsa wajah buatan tangan masih secara luas digunakan dalam kepolisian, terutama untuk menggambarkan karakter wajah seseorang dengan cepat pada proses pencarian tersangka maupun orang hilang. Polisi akan menggunakan sketsa wajah tersebut untuk mencari orang yang digambarkan. Telah banyak penelitian yang dilakukan untuk membuat cara ini semakin efektif. Salah satunya adalah membandingkannya dengan Database Pencarian Orang (DPO) ataupun membuat komposit wajah. Namun, pembuatan komposit wajah dengan aplikasi membutuhkan waktu yang cukup lama dan perbandingan dengan DPO secara langsung memiliki tingkat akurasi yang perlu dikembangkan lebih lanjut. Penelitian ini mengaplikasikan Generative Adversarial Networks (GAN) untuk mengubah gambar sketsa menjadi citra berwarna, menerapkan Total Variation (TV) pada loss function untuk meningkatkan performa model, dan menerapkan koreksi warna untuk memperbaiki warna kulit yang dihasilkan. Tujuan penelitian ini yaitu agar dapat menggambarkan karakter orang pada sketsa dengan lebih akurat dan cepat dibandingkan metode terdahulu. GAN sendiri adalah sebuah machine learning framework yang menggunakan dua buah network yaitu, generator dan diskriminator. Generator akan membuat sampel baru berdasarkan pola sampel dataset dan diskriminator akan menentukan apakah sampel yang dihasilkan nyata atau hasil dari generator. Sistem akan mengulang proses ini sampai generator dapat menghasilkan sampel yang sangat mirip dengan sampel dari dataset. Dataset yang digunakan dikumpulkan dari beberapa dataset lain dengan konfigurasi jumlah training 1355, validation 10, dan testing 68. Beberapa skenario dengan parameter berbeda dilakukan dan hasil terbaik didapati dengan menggunakan Lambda L1 sebesar 100 dan Lambda TV sebesar 0.00001 dengan nilai evaluasi SSIM 0.83 dan FID 94.705. Setelah diimplementasikan dengan koreksi warna, GAN menghasilkan citra yang lebih realistis dengan hasil evaluasi yang didapatkan adalah 0.76 dan 78.944 untuk SSIM dan FID. Dengan metode tersebut, GAN dapat menghasilkan citra yang realistis secara visual dari sketsa wajah dan memiliki warna yang sesuai dengan citra aslinya. ......Until now, hand-drawn face sketches are still widely used in Indonesia's police force, especially to quickly describe the character of a person's face in the process of searching for suspects and missing persons. Police will use the face sketch to search for the respected person. A lot of research has been done to make this method more effective. One of them is to compare it with the People Search Database (DPO) or create a facial composite. However, making facial composites by application takes quite a long time, and direct comparison with DPO has a level of accuracy that needs to be developed further. This study applies a Generative Adversarial Networks (GAN) to convert a sketch image into a color image, applies a Total Variation (TV) to the loss function to improve model performance, and applies a color correction to improve the resulting skin tone. The purpose of this study is to be able to describe the character of the people on the sketch more accurately and quickly than the previous method. GAN itself is a machine learning framework that uses two networks, namely, generator and discriminator. The generator will create a new sample based on the sample dataset pattern, and the discriminator will determine whether the resulting sample is real or the result of the generator. The system repeats this process until the generator can generate a sample that is very similar to the sample from the dataset. The dataset used is gained from several other datasets with the split configuration of 1355 for training, 10 for validation, and 68 for testing. Several scenarios with different parameters were carried out, and the best results were obtained using Lambda L1 of 100 and Lambda TV of 0.00001 with an evaluation value of SSIM 0.83 and FID 94,705. After being implemented with color correction, GAN produces a more realistic image with the evaluation results obtained are 0.76 and 78.944 for SSIM and FID. GAN can produce visually realistic images from facial sketches and have colors that match the original image with this method.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wava Carissa Putri
Abstrak :
Pembuatan dataset emosi wajah membutuhkan sumber daya dan waktu yang banyak. Salah satu solusi menyelesaikan permasalahan ini adalah menggunakan Generative Adversarial Network (GAN) untuk melakukan augmentasi data pada data emosi wajah. Namun, jumlah data yang terbatas membuat GAN belum dapat menghasilkan citra yang beragam. Salah satu pendekatan yang dapat dilakukan untuk mengatasi hal tersebut adalah penggunaan energy function untuk membuat probability function yang lebih detail. Penelitian ini bertujuan untuk merancang sebuah model dengan menggunakan EB-GAN dan attention untuk mengatasi masalah translasi gambar dengan emosi Neutral menjadi gambar dengan emosi dasar. Eksperimen yang dilakukan pada penelitian ini bertujuan untuk melakukan modifikasi terhadap arsitektur DINO dengan menambahkan attention untuk meningkatkan kualitas hasil translasi model. Hasil translasi model dievaluasi menggunakan emotion recognition untuk mengetahui akurasi emosi yang dihasilkan. Pada penelitian ini terlihat bahwa penggunaan attention tidak dapat meningkatkan akurasi DINO dikarenakan terdapat banyaknya fitur pembeda antar emosi yang tersebar pada wajah. Pada penelitian ini DINO pada dataset berwarna menghasilkan akurasi sebesar 96.78% dan DINO pada dataset grayscale menghasilkan akurasi sebesar 94.50%. Dalam pembuatan dataset baru, DINO menghasilkan akurasi sebesar 83% untuk dataset berwarna dan 85.6% untuk dataset grayscale. ......Creating a facial emotion dataset requires a lot of resources. To solve this problem, previous research utilizes Generative Adversarial Networks (GANs) to create artificial data. However due to the limited number of available data, this would affect the GANs itself and would result in generating a less diverse data. One way to solve this problem is to use an energy function to create a more detailed probability function. This research aimed to create a model based on EB-GAN and attention to solve problems during translating a neutral image into an image with a basic emotion. This experiment uses a variation of EB-GAN for image translation, DINO, and modify its architecture by adding attention modules to improve the performance of the model during translation. The result of the experiments are evaluated using emotion recognition systems. This results show that the use of attention did not improve the performance of DINO. This is due the fact that each emotion have multiple features and the location of the features are scattered within a face. This experiment shows that DINO obtained the highest accuracy in both colored (RGB) and grayscale data. DINO obtains a 96.78% accuracy for colored (RGB) data and 94.50% for grayscale data. During the creation of new dataset, DINO obtained an accuracy of 83% for colored (RGB) data and 85.6% for grayscale data.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Alexander Anindito Setyono
Abstrak :
Transportation has been a significant industry for big cities for hundreds of years. It is a part of our everyday lives and contributes considerably to a country’s economy. As the population of a certain country keep on increasing as time flies by, the demand for the innovation in the transportation world kept on increasing to keep up with the exponential growth of the industry. One of the technology that is used to handle the increasing demand for transportation analytics is by using big data analytics as it can handle humongous amount of data that are too large or complex to be dealt with traditional data processing application software. Big data analytics has been used through many different kind of applications in the modern era and it has achieve a great number of success in different field of work. A traffic data imputation is proposed in order to solve this problem and there are several imputation methods that are available which has their own plus and minuses. There are traditional data imputation methods that are already used from many years ago such as linear interpolation and regression but it has been proved that this traditional methos still have a low accuracy rating. Hence, a more modernized and more accurate method is introduced which is called the Generative Adversarial Network (GAN). ......Transportasi telah menjadi industri yang signifikan bagi kota-kota besar selama ratusan tahun. Ini merupakan bagian dari kehidupan kita sheari-hari dan berkontribusi besar terhadap perekonomian suatu negara. Seiring dengan bertambahnya jumlah penduduk suatu negara, permintaan akan inovasi dalam dunia transportasi terus meningkat untuk mengikuti pertumbuhan industri yang eksponensial. Salah satu teknologi yang digunakan untuk menangani peningkatan permintaan ini adalah dengan menggunakan analitik data besar karena dapat menangani data dalam jumlah yang terlalu besar dan kompleks untuk ditangani dengan aplikasi perangkat lunak pengolah data tradisional. Dalam menjalankan Analisa menggunakan analisis data besar, ada masalahnya yang muncul yaiu hadirnya data data yang tidak lengkap. Sebuah metode imputasi data diusulkan untuk mengatasi masalah ini seperti interpolasi linier dan metode yang lebih modern dan akurat digunakan pada skripsi ini yang disebut jaringan berlawanan generatif.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sinaga, Marshal Arijona
Abstrak :
Tugas Akhir ini menelaah least square adversarial autoencoder yang menggunakan least square generative adversarial network sebagai diskriminatornya. Diskriminator tersebut meminimalkan fungsi Pearson χ 2 divergence antara distribusi variabel laten dan suatu distribusi apriori. Adanya diskriminator memungkinkan autoencoder untuk membangkitkan data yang memiliki karakteristik yang menyerupai sampel pembelajarannya. Penelitian ini dilakukan dengan membuat program yang memodelkan least square adversarial autoencoder. Program memodelkan dua jenis autoencoder yaitu unsupervised least square adversarial autoencoder dan supervised least square adversarial autoencoder dengan memanfaatkan dataset MNIST dan FashionMNIST. Unsupervised least square adversarial autoencoder menggunakan variabel laten berdimensi 20 sementara supervised least square adversarial autoencoder menggunakan variabel laten masing-masing berdimensi 2, 3, 4, dan 5. Program diimplementasikan menggunakan framework PyTorch dan dieksekusi menggunakan Jupyter Notebook. Seluruh aktivitas pemrograman dilakukan pada environment cloud yang disediakan oleh Floydhub dan Tokopedia-UI AI Center yang masing-masing menggunakan GPU NVIDIA Tesla K80 dan NVIDIA Tesla V100 sebagai perangkat komputasinya. Proses pembelajaran pada unsupervised least square adversarial autoencoder berlangsung selama dua jam sementara pada supervised least square adversarial autoencoder berlangsung selama enam jam. Berdasarkan hasil eksperimen, nilai mean squared error unsupervised least square adversarial autoencoder untuk masing-masing dataset MNIST dan FashionMNIST adalah 0.0063 dan 0.0094. Sementara itu, nilai mean squared error supervised least square adversarial autoencoder pada dataset MNIST sebesar 0.0033. Selanjutnya, nilai Frechet Inception Distance unsupervised least square adversarial autoencoder untuk masing-masing dataset MNIST dan FashionMNIST adalah 15.7182 dan 38.6967. Sementara itu, nilai Frechet Inception Distance supervised least square adversarial autoencoder pada dataset MNIST sebesar 62.512. Hasil tersebut menunjukkan bahwa least square adversarial autoencoder mampu merekonstruksi citra dengan baik, namun kurang mampu membangkitkan citra dengan kualitas sebaik sampel pembelajarannya. ......This Final Project (Tugas Akhir) investigates the least square adversarial autoencoder that uses least square generative adversarial network as its discriminator. The discriminator minimizes the Pearson χ 2 divergence between the latent variable distribution and the prior distribution. The presence of discriminator allows the autoencoder to generate data that has characteristics that resemble the original data. Python programs were developed to model the least square adversarial autoencoder. This programs try to model two types of autoencoder namely unsupervised least square adversarial autoencoder and supervised least square adversarial autoencoder by utilizing MNIST dataset and FashionMNIST dataset. The unsupervised least square adversarial autoencoder uses latent variables of dimension 20 while the supervised least square adversarial autoencoder uses latent variables with dimensions of 2, 3, 4, and 5, respectively. This programs were implemented using PyTorch and executed using Jupyter Notebook. All of the programming activities are carried out in the cloud environment provided by Floydhub and Tokopedia-UI AI Center, respectively using NVIDIA Tesla K80 GPU and NVIDIA Tesla V100 GPU as their computing resource. Training time in unsupervised least square adversarial autoencoder lasts for two hours while in supervised least square adversarial autoencoder lasts for six hours. The Results of experiments show that the mean squared error of unsupervised least square adversarial autoencoder for MNIST dataset and FashionMNIST dataset are 0.0063 and 0.0094, respectively. Meanwhile, the mean squared error of supervised least square adversarial autoencoder for MNIST dataset is 0.0033. Furthermore, the Frechet Inception Distance scores of unsupervised least square adversarial autoencoder for MNIST dataset and FashionMNIST dataset are 15.7182 and 38.6967, respectively. Meanwhile, the value of Frechet Inception Distance score of supervised least square adversarial autoencoder in MNIST dataset is 62.512. These results indicate that the least square adversarial autoencoder is able to reconstruct the image properly, but is less able to generate images with the same quality as the learning sample.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Herardita Cahyaning Wulan
Abstrak :
Age-related macular degeneration (AMD) adalah penyakit degeneratif pada makula yang menyebabkan gangguan penglihatan sentral pada orang lanjut usia. Secara global, orang yang didiagnosis mengalami AMD mencapai 170 juta orang. Pada 2018, AMD menjadi penyebab kebutaan terbesar ketiga di Indonesia, setelah katarak dan gangguan refraksi. Salah satu pendekatan teknologi dalam bidang kedokteran adalah menggunakan sains data dan deep learning untuk mendeteksi dan mendiagnosis penyakit mata. Salah satu metode deep learning yang paling efektif untuk memahami data berbasis citra adalah Convolutionl Neural Network (CNN). Di antara arsitektur CNN yang dikembangkan, arsitektur EfficientNet merupakan salah satu yang paling efektif untuk mencapai akurasi terbaik pada tugas klasifikasi gambar serta efisien secara komputasional. Data yang digunakan dalam penelitian ini adalah data citra fundus retina yang bersumber dari empat open source database. Terdapat dua kelas yang akan diklasifikasi yaitu Normal dan AMD. Dengan penggabungan beberapa dataset muncul beberapa masalah yaitu terdapat perbedaan dimensi dan kontras pada citra. Sebelum dataset digunakan untuk melatih model, dilakukan preprocessing dengan centered crop, resize, dan Contrast Limited Adaptive Histogram Equalization (CLAHE). Masalah lain yang muncul adalah ukuran dataset yang kecil karena sulitnya mendapatkan data medis pasien. Salah satu metode yang dapat menjadi solusi adalah Generative Adversarial Network (GAN) yang digunakan untuk menghasilkan data citra sintetis. Penelitian ini diajukan untuk menerapkan metode GAN guna meningkatkan kinerja model EfficientNet dalam mendeteksi AMD. Untuk melakukan hal tersebut dibuat tiga skenario untuk membandingkan kinerja EfficientNet. Skenario A yaitu melakukan klasifikasi dengan dataset asli, tanpa preprocessing CLAHE dan tanpa augmentasi GAN. Skenario B melakukan klasifikasi dengan dataset yang sudah diaugmentasi dengan GAN. Sedangkan, skenario C melakukan klasifikasi dengan dataset yang diaugmentasi dengan GAN dan melalui preprocessing CLAHE. Metrik evaluasi yang digunakan untuk mengukukur kinerja adalah akurasi, sensitivity, dan specifity. Pada skenario A dengan rasio splitting data 70:15:15 dan 80:10:10 didapat rata-rata akurasi sebesar 89,01% dan 88,52%. Sedangkan, pada skenario B dengan rasio 70:15:15 dan 80:10:10 didapat rata-rata akurasi sebesar 87,10% dan 89,86%. Pada Skenario C dengan rasio 70:15:15 dan 80:10:10 didapat rata-rata akurasi sebesar 88,97% dan 91,27%. Skenario terbaik adalah skenario C dengan rasio 80:10:10 dengan nilai akurasi tertinggi 92,96%, sensitivity tertinggi mencapai 93,55%, dan specifity tertinggi mencapai 95,00%. ......Age-related macular degeneration (AMD) is a degenerative disease of the macula that causes central vision impairment in the elderly. Globally, the number of people diagnosed with AMD reaches 170 million. In 2018, AMD became the third leading cause of blindness in Indonesia, following cataracts and refractive errors. One technological approach in the field of medicine is utilizing data science and deep learning to detect and diagnose eye diseases. One of the most effective deep learning methods for understanding image-based data is the Convolutional Neural Network (CNN). Among the developed CNN architectures, EfficientNet is one of the most effective in achieving the best accuracy in image classification tasks while being computationally efficient. The data used in this research consists of fundus retinal images sourced from four open source databases. There are two classes: Normal and AMD. Combining multiple datasets presents several issues, such as differences in image dimensions and contrast. Before the dataset is used to train the model, preprocessing is conducted using centered crop, resize, and Contrast Limited Adaptive Histogram Equalization (CLAHE). Another emerging issue is the small dataset size due to the difficulty of obtaining patient medical data. One method that can provide a solution is the Generative Adversarial Network (GAN), which is used to generate synthetic image data. This study proposes to implement GAN to enhance the performance of the EfficientNet model in detecting AMD. To achieve this, three scenarios were created to compare the performance of EfficientNet. Scenario A involves classification with the original dataset, without CLAHE preprocessing and without GAN augmentation. Scenario B involves classification with the dataset augmented by GAN. Scenario C involves classification with the dataset augmented by GAN and processed through CLAHE preprocessing. The evaluation metrics used to measure performance are accuracy, sensitivity, and specificity. In Scenario A, with data splitting ratios of 70:15:15 and 80:10:10, the average accuracy obtained was 89.01% and 88.52%, respectively. In Scenario B, with the same data splitting ratios, the average accuracy obtained was 87.10% and 89.86%, respectively. In Scenario C, with data splitting ratios of 70:15:15 and 80:10:10, the average accuracy obtained was 88.97% and 91.27%, respectively. The best scenario is Scenario C with a ratio of 80:10:10, achieving the highest accuracy of 92.96%, the highest sensitivity of 93.55%, and the highest specificity of 95.00%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library