Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13 dokumen yang sesuai dengan query
cover
Miguel Bintang Samuel
Abstrak :
Pengembangan teknologi energi terbarukan di Indonesia memiliki potensi besar dengan kapasitas teknis energi angin sebesar 60,6 GW. Namun, kecepatan angin yang relatif rendah menjadi tantangan. Skripsi ini bertujuan untuk merancang dan menganalisis kinerja turbin angin vertikal Aeromine, yang sudah dipatenkan pada paper, menggunakan pemodelan matematika dari teori cakram aktuator pada kecepatan angin rendah (2-5 m/s) dengan menggunakan Computational Fluid Dynamics (CFD) dan pengujian terowongan angin dengan prototipe hasil 3D Print. Dua profil airfoil, S1210 dan S1223, serta dua modifikasi inlet, yaitu wind concentrator Invelox dan nozzle yang di isolasi dari aliran freestream, dievaluasi untuk meningkatkan efisiensi turbin. Hasil simulasi menunjukkan bahwa airfoil S1223 memiliki koefisien lift yang lebih tinggi, tetapi hasil eksperimen menunjukan peningkatan drag yang signifikan menghambat kinerja keseluruhan. Desain inlet dengan wind concentrator meningkatkan laju aliran udara, sementara isolasi dari freestream meningkatkan tekanan statis pada inlet. Pada kecepatan rendah, turbin Aeromine mencapai efisiensi terbaik sebesar 1,5% dari total energi angin yang tersedia, menghasilkan 2,17 Watt pada kecepatan 5 m/s. Efisiensi rotor dalam sistem Aeromine juga meningkat sebesar 205,4% dari batas Betz pada 5 m/s dibandingkan konfigurasi HWAT, dimana konfigurasi terbaik adalah airfoil S1210 dengan inlet nozzle terisolasi. Strategi peningkatan terbaik berfokus pada peningkatan daya hisap dengan mengurangi kecepatan di sekitar inlet untuk meningkatkan tekanan statis sesuai prinsip Bernoulli dan menggunakan airfoil dengan efisiensi lift yang baik. Dengan desain airfoil dan inlet yang dioptimalkan, turbin Aeromine terbukti lebih efektif di area dengan kecepatan angin rendah, meskipun efisiensi konversi total energi angin masih rendah dimana pengembangan lebih lanjut bisa dilakukan. ......The development of renewable energy technology in Indonesia holds significant potential, with a technical wind energy capacity of 60.6 GW. However, the relatively low wind speeds present a challenge. This thesis aims to design and analyze the performance of a paper patented Aeromine wind turbine using mathematical modeling from actuator disk theory at low wind speeds (2-5 m/s) using Computational Fluid Dynamics (CFD) and wind tunnel testing with a 3D-printed prototype. Two airfoil profiles, S1210 and S1223, and two inlet modifications, wind concentrator invelox and nozzle with freestream isolation, were evaluated to improve turbine efficiency. Simulation results showed that the S1223 airfoil had a higher lift coefficient, but experimental results indicated that the significant increase in drag hindered overall performance. The inlet design with a wind concentrator increased the airflow rate, while freestream isolation increased static pressure at the inlet. At low wind speeds, the Aeromine turbine achieved its best efficiency of 1.5% of the total available wind energy, generating 2.17 Watts at 5 m/s. The rotor efficiency in the Aeromine system also increased by 205.4% from the Betz limit at 5 m/s compared to HWAT configuration, with the best configuration being the S1210 airfoil with isolated nozzle inlet. The best improvement strategy focuses on increasing suction by reducing the velocity around the inlet to boost static pressure according to Bernoulli's principle and using airfoils with good lift efficiency. With optimized airfoil and inlet designs, the Aeromine turbine proves to be more effective in areas with low wind speeds, although the overall conversion efficiency of the total available wind energy remains low where future improvement can be focused.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Priyo Tri Utomo
Abstrak :
ABSTRAK
Separasi merupakan salah satu masalah pada model airfoil yang menyebabkan pengurangan dari gaya lift dan peningkatan dari gaya drag yang dihasilkan, oleh karena itu dibutuhkan kontrol aliran untuk mengatasi separasi. Kontrol aliran dengan menggunakan plasma aktuator pada model airfoil sangatlah menjanjikan. Tetapi kurangnya penelitian pada bagian trailing edge dari airfoil membuat kemampuan dari airfoil masih dipertanyakan. Pada Re = 75000 dan dengan konfigurasi penggunaan plasma aktuator yang telah ditentukan diharapkan dapat memberikan momentum kepada aliran dan membuat aliran lebih turbulen agar terjadi penundaan terhadap separasi. Dari hasil eksperimen serta simulasi penggunaan plasma aktuator dengan konfigurasi yang telah ditentukan pada penelitian ini dapat meningkatkan gaya lift maksimal sebesar 12 pada ?=8odan penurunan dari gaya drag maksimal sebesar 22,4 pada ?=-2o.
ABSTRACT
Rtant problem on airfoil that reduce lift force and increase drag force that generated. Flow control using plasma actuator on airfoil models are promising. But lack on research on trailing edge of the airfoil make plasma actuator performance questionable. On this research will use plasma actuator on airfoil trailing edge and for prove that plasma actuator could control the flow on Re 75.000. With given configuration on this research plasma actuator is expected to gives momentum to air and makes flow become more turbulent to delaying separation that could increase lift and reduce drag. From experimental and simulation data show us that with this configuration could increase lift force up to 12 on 8o and reduce drag force up to 22,4 on 2o.
2017
S68960
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aji Putro Prakoso
Abstrak :
ABSTRAK
Daerah pedesaan terpencil mengakibatkan pembangunan jaringan listrik terpusat menjadi mahal dan tidak efisien. Untuk daerah terpencil yang memiliki aliran sungai yang cukup deras, direkomendasikan untuk membangun pembangkit listrik piko hidro run-off-river sebagai sumber energi untuk jaringan listrik mandiri mereka yang dapat menghasilkan listrik yang cukup untuk desa kecil dengan biaya investasi yang rendah. Turbin jenis cros-flow Banki sudah dikenal akan kesederhanaan dalam bentuk, rancangan, serta konstruksinya. Hal ini menyebabkan biaya konstruksi turbin tipe menjadi lebih murah dibandingkan dengan turbin lain seperti propeler dan Pelton. Selain itu, hal tersebut membuat turbin jenis ini lebih mudah diperbaiki ditambah kemampuan membersihkan diri dari turbin ini. Selain kelebihan tersebut turbin ini juga memiliki efisiensi yang cukup stabil meskipun debit aliran air yang masuk fluktuatif. Di sisi lain, turbin cross-flow memiliki efisiensi maksimum yang lebih rendah dibanding turbin lain seperti propeler dan Pelton. Gaya hambat biasanya akan muncul pada aliran fluida yang melalui benda tercelup, seperti sudu turbin, disebabkan karena terbentuknya pusaran. Gaya ini biaunya akan mengurangi efisiensi turbin. Konsep airfoil sudah terbukti dapat mengurangi gaya drag sehingga dapat meningkatkan efisiensi beberapa turbin. Studi kali ini bertujuan untuk mengetahui efek konsep airfoil NACA di sudu turbin cross-flow pada efisiensinya. Pada studi kali ini, NACA-6712 digunakan sebagai profil sudu turbin karena memiliki koefisien gaya lift paling besar dibandingkan dengan semua profil yang lain. Studi kali ini membandingkan turbin cross-flow yang menggunakan sudu dengan konsep NACA-6712 dengan turbin yang menggunakan sudu biasa menggunakan simulasi CFD. Studi ini menggunakan tinggi tekan 2.7 meter dan debit aliran air 0.04 m3/s. ANSYS FLUENT 15 dengan permodelan turbulen SST digunakan dalam studi ini. Hasil studi kali ini adalah simulasi CFD mendapatkan bahwa efisiensi maksimum turbin yang menggunakan sudu biasa adalah 95 dengan jumlah sudu 30 buah, sedangkan turbin yang menggunakan sudu dengan konsep NACA-6712 memiliki efisiensi maksimal 91.7 dengan jumlah sudu 25 buah. Dari hasil tersebut dapat disimpulkan bahwa turbin cross-flow dengan sudu biasa memiliki efisiensi yang lebih baik daripada yang menggunakan konsep NACA-6712.
ABSTRACT
Isolated rural area makes on grid electrification development becomes expensive and inefficient. For rural area with quite torrential river flow, it is recommended to build run of river pico hydro power plant for their mini grid power system to produce enough electricity for small village with low investment cost. Cross flow Banki turbine is well known for its simplicity of shape, design, and construction. Thus, the construction cost of this type of turbine is very low rather than another turbine like propeller and Pelton. Moreover, it also makes cross flow Banki turbine easier to maintain, moreover this turbine has self cleaning ability. Furthermore, cross flow Banki turbine is well known for its independent efficiency from fluctuation of water discharge. Beside of many advantage on this turbine, cross flow Banki turbine efficiency is relatively lower than another turbine. The drag force usually present when water flowing around immerse body, like turbine blade because of eddy formation. This force usually reduces the turbine efficiency. Airfoil profiles are proven to reduce eddy formation in water flow around immerse body like turbine blade then increase some turbine efficiency. This study aims to investigate the effect of NACA airfoil in blade profile to the cross flow turbine efficiency. NACA 6712 airfoil profile was chosen because it has bigger lift coefficient than others. In this study, the turbine with NACA 6712 airfoil profiled blade cross flow turbine has been compared with ordinary one by using CFD simulation. This study uses 2.7 m head and 0.04 m3 s of water discharge. ANSYS FLUENT 15 with SST turbulence model is used in this study. As a result, CFD simulation found that maximum efficiency of ordinary blades turbine is 95 with number of blades 30. While, the maximum efficiency of NACA 6712 turbine is 91.7 with 25 blades. From the results, it can be obtained that the ordinary turbine is better than NACA 6712 turbine.
2017
S67177
UI - Skripsi Membership  Universitas Indonesia Library
cover
Derizar Ihsan Pratama
Abstrak :
ABSTRACT
Ice accretion pada sayap menjadi salah satu penyebab kecelakaan pesawat terbang karena akan merusak aliran udara pada sayap. Bentuk ice accretion yang terjadi dapat diinvestigasi melalui beberapa cara seperti flight test, eksperimen wind tunnel, dan simulasi numerik. Flight test dan eksperimen wind tunnel dapat menentukan bentuk es yang akurat namun tidak praktis dan memakan banyak biaya. Kode LEWICE digunakan untuk memprediksi geometri es yang akan terbentuk pada sayap pesawat N219 dalam kondisi atmosfir icing. Kondisi atmosfir icing ini telah sesuai dengan kebutuhan sertifikasi icing yang tertera dalam 14 CFR part 25.1419, Appendix C. Pada penelitian ini didapatkan 2 kategori es yang terbentuk pada leading edge sayap pesawat N219 yaitu horn ice dan streamwise ice. Degradasi performa airfoil yang terjadi didapatkan menggunakan XFLR5. Perubahan performa airfoil ini digunakan untuk mencari perubahan landing distance pesawat N219 saat es terbentuk. Dari hasil penelitian didapatkan bahwa degradasi performa airfoil paling besar terjadi disebabkan oleh horn ice. Namun, degradasi performa airfoil yang didapatkan tidak terlalu mempengaruhi perubahan landing distance pesawat N219 saat terjadi icing. Perubahan landing distance yang terjadi karena adanya ice accretion berkisar antara sampai.
ABSTRACT
Ice accretion on a wing is one of the accident factor in aviation because it will interrupt the flow over the wing. The shape of ice accretion can be investigated through filght test, wind tunnel experiment, and numerical simulation. Flight test and wind tunnel experiment will determine the shape of ice accurately but usually too expensive and not practical. Therefore, numerical simulation is used to predict the shape of ice accretion because it is economic and can simulate the icing process and provide a relatively exact evaluation of ice accretion. LEWICE code is used to predict the geometry of ice that will accrete on the leading edge of the aircraft wing in atmospheric icing condition. This atmospheric icing condition is based on icing certification in 14 CFR part 25.1419, Appendix C. Two category of ice accretion, horn ice and streamwise ice, were obtained on the leading edge. The degradation of airfoil performance then obtained form XFLR5. The change of the airfoil performance will affect the landing distance of the aircraft when the ice accretion happened. The most degradation of airfoil performance is caused by horn ice. But, the degradation of airfoil performance not really have big effects on the change of the aircraft landing distance. The landing distance that change because of ice accretion is within range of and.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hana Nabila
Abstrak :
Pada tahun 2020, Indonesia masih menggunakan sumber energi yang didominasi oleh 39% batu bara, 31% minyak bumi, dan 18% gas bumi. Dengan adanya peningkatan suhu global dan penyelenggaraan COP (Conference of the Parties) oleh Perserikatan Bangsa-Bangsa (PBB), maka Indonesia ikut serta dalam usaha mengurangi laju pertumbuhan suhu di dunia. Hal tersebut dapat ditanggulangi dengan penggunaan energi terbarukan. Energi Tidal menjadi salah satu opsi yang baik untuk diterapkan di Indonesia dikarenakan kondisi geografis Indonesia yang merupakan negara kepulauan, sehingga memiliki potensi energi tidal yang besar. Energi tidal merupakan energi yang dihasilkan dari pergerakan pasang surut air laut. Hal tersebut menjadi keuntungan energi tidal, dikarenakan pergerakan pasang surut air laut bersifat pasti, sehingga energi tidal lebih dapat diandalkan dan dapat diprediksi. Literatur terkait turbin tidal membuktikan bahwa nilai koefisien daya meningkat ketika ditambahkan diffuser dan brim pada turbin tersebut. Hal yang dapat meningkatkan kinerja turbin tidal selain diffuser dan brim adalah sudu turbin. Dikarenakan salah satu pertimbangan terbesar turbin tidal merupakan biaya fabrikasi dan operasional yang besar, maka butuh dilakukan studi untuk mendapatkan desain turbin tidal yang paling optimal. Sudu turbin dengan profil airfoil NACA 4418 memiliki berbagai keuntungan untuk desain turbin tidal, seperti ketahanan terhadap roughness yang lebih tinggi, dan tingkat stall pada angle of attack yang lebih besar. Berdasarkan hasil simulasi, didapatkan power coefficient tertinggi dari semua variasi pada NACA 4418 adalah sebesar 97,803%. Sudu turbin dengan profil NACA 4418 dapat menjadi salah satu pilihan untuk implementasi langsung dengan melihat ketahanannya terhadap roughness, yang cenderung terjadi pada kondisi lingkungan untuk turbin tidal. ......In 2020, Indonesia's energy sources were still dominated by 39% coal, 31% petroleum, and 18% natural gas. With the increasing global temperature and the organization of the Conference of the Parties (COP) by the United Nations (UN), Indonesia is participating in efforts to reduce the rate of global temperature rise. This can be addressed through the use of renewable energy. Tidal energy is one viable option to be implemented in Indonesia due to its geographical condition as an archipelago, which offers significant tidal energy potential. Tidal energy is generated from the movement of the ocean tides. This is advantageous because tidal movements are predictable and reliable. Relevant literature on tidal turbines has shown that the power coefficient increases when a diffuser and brim are added to the turbine. Blade design is another factor that can enhance the performance of tidal turbines. Considering the high fabrication and operational costs of tidal turbines, it is necessary to conduct studies to obtain the most optimal turbine design. Blades with NACA 4418 airfoil profiles offer several advantages for tidal turbine design, including higher resistance to roughness and a larger stall angle of attack. Based on simulation results, the highest power coefficient obtained for all variations with NACA 4418 was 97.803%. Blades with the NACA 4418 profile can be considered as one of the choices for direct implementation, considering their resistance to roughness, which tends to occur in the environmental conditions for tidal turbines.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Peng, William W.
Abstrak :

ABSTRACT
A comprehensive introduction to turbomachines and their applications With up-to-date coverage of all types of turbomachinery for students and practitioners, Fundamentals of Turbomachinery covers machines from gas, steam, wind, and hydraulic turbines to simple pumps, fans, blowers, and compressors used throughout industry. After reviewing the history of turbomachinery and the fluid mechanical principles involved in their design and operation, the book focuses on the application and selection of machines for various uses, teaching basic theory as well as how to select the right machine for a specific use. With a practical emphasis on engineering applications of turbomachines, this book discusses the full range of both turbines and pumping devices. For each type, the author explains: * Basic principles * Preliminary design procedure * Ideal performance characteristics * Actual performance curves published by the manufacturers * Application and appropriate selection of the machine Throughout, worked sample problems illustrate the principles discussed and end-of-chapter problems, employing both SI and the English system of units, provide practice to help solidify the reader's grasp of the material.
Hoboken, New Jersey: Wiley, 2008
621.406 PEN f
Buku Teks  Universitas Indonesia Library
cover
Logan, Earl
New York: M. Dekker, 1993
621.406 LOG t
Buku Teks  Universitas Indonesia Library
cover
Fadli Cahya Megawanto
Abstrak :
Separasi aliran merupakan fenomena yang sangat mempengaruhi performa dari airfoil akibat adverse pressure gradient. Dimana daerah setelah terjadinya separasi terdapat kehilangan energi kinetik dan menghasilkan pengaruh yang tidak diinginkan, yaitu peningkatan gaya drag. Didalam mengatasi kondisi tersebut, salah satu metoda yang dapat dilakukan adalah dengan memberikan momentum ke dalam fluida untuk melawan adverse pressure gradient sehingga mampu menunda atau bahkan menghilangkan separasi aliran. Penelitian ini membahas mengenai penggunaan aktuator plasma yang ditempatkan pada 0.21 c dari leading edge airfoil NACA 4415. Bilangan Reynolds yang digunakan adalah 35,000, 100,000, dan 200,000. Penelitian ini menggunakan dua metode, yaitu komputasi dan eksperimental. Software CFD Fluent 6.3.26 digunakan pada metode komputasi guna mengetahui pengaruh aktuator plasma terhadap gaya aerodinamika serta menjelaskan medan aliran yang melalui model uji. Sedangkan load cell, digunakan guna mendapatkan hasil gaya aerodinamika sehingga dapat memvalidasi data dari metode komputasi. Selain itu, dilakukan pula visualisasi aliran untuk memahami fenomena aliran yang melintasi model uji. Dari hasil percobaan penggunaan aktuator plasma secara umum mampu meningkatkan nilai koefisien lift (CL) dan menurunkan koefisien drag (CD) dengan rata - rata kenaikkan CL sebesar 24.90%, 7.81% dan 1.37%, serta rata - rata penurunan CD sebesar 8.45%, 0.86% dan 1.96% pada masing - masing variasi Reynolds number. Pengaruh paling optimal adalah pada Re 35,000 dan mampu melakukan penundaan titik separasi terbaik sebesar 0.0107 pada α = 90.
Flow separation is a phenomenon that greatly affects the performance of airfoil due to adverse pressure gradient. There is a loss of kinetic energy at the area after separation and produces undesirable effects, i.e an increasing in drag force. In dealing with the condition, one method that can be done is to provide momentum into the fluid to resist the adverse pressure gradient or even eliminate the flow separation. This study discusses the use of plasma actuators placed at 0.21 c from the leading edge of airfoil NACA 4415. The used Reynolds number are 35,000, 100,000, and 200,000. This research uses two methods, namely computational and experimental. Software CFD Fluent 6.3.26 is used in the calculation method. Load cell, used for experimental in resulting aerodynamics force. In addition, there is also a visualization of the flow to understand the phenomenon. In general, the experimental resulting the use of plasma actuators can increase the lift force and decreasing drag force. The average increasing in value by 0.40%, 7.81% and 1.37%, and the average decreased by 8.45%, 0.86% and 1.96% in each Reynolds number variation. The most optimal effect is at Re 35,000 and is able to prevent the best separation point of 0.0107 at α = 90.
Depok: Fakultas Teknik Universitas Indonesia, 2018
T49210
UI - Tesis Membership  Universitas Indonesia Library
cover
Farel Athallah Aqil
Abstrak :
Kebutuhan energi listrik global pada tahun 2022 mencapai 3,63 MWh per kapita didominasi dari pembangkit listrik batu bara, dan gas,. 61,55% sumber energi listrik di Indonesia berasal dari batu-bara. Transisi menuju energi baru terbarukan disepakati oleh seluruh negara dunia yang tertuang pada paris agreement dan COP 27 dengan target membatasi suhu global hingga 1.5 oC diatas tingkat pra industrialisasi. Indonesia menghadapi tantangan dalam transisi menuju energi baru terbarukan dimana terjadi penurunan penggunaan energi baru terbarukan dari 11,5% pada 2021 menjadi 10,4% pada 2022. Energi terbarukan yang bisa dimanfaatkan Indonesia salah satunya adalah energi pasang surut. Letak geografis indonesia yang merupakan negara kepulauan menyimpan potensi energi tidal yang sangat besar. Kecepatan arus pasang surut di Indonesia sendiri mencapai 2,8 m/s. Dibutuhkan studi lebih lanjut untuk mendapatkan turbin tidal yang ideal. Literatur terkait upaya meningkatkan nilai power coefficient turbin tidal membuktikan bahwa profil airfoil NACA 4418 yang dikenal memiliki stall delay dan ketahanan terhadap roughness mampu meningkatkan kinerja dari turbin tidal sumbu horizontal. Selain itu, penggunaan diffuser juga dapat meningkatkan power coefficient turbin dimana semakin besar sudut diffuser yang digunakan maka semakin besar nilai power coefficient yang dapat dihasilkan. Berdasarkan hasil eksperimen dengan variasi sudut diffuser 10,43° dan 15,34° didapatkan power coefficient tertinggi sebesar 34,8%. ......The global electricity demand in 2022 reached 3.63 MWh per capita, dominated by coal and gas power plants. In Indonesia, 61.55% of electricity comes from coal. The transition to renewable energy was agreed upon by all countries as outlined in the Paris Agreement and COP 27, with the goal of limiting the global temperature rise to 1.5°C above pre-industrial levels. Indonesia faces challenges in transitioning to renewable energy, with the share of renewable energy decreasing from 11.5% in 2021 to 10.4% in 2022. One of the renewable energy sources that Indonesia can harness is tidal energy. Indonesia's geographic location as an archipelago holds great potential for tidal energy, with tidal current speeds reaching up to 2.8 m/s. Further studies are needed to develop the ideal tidal turbine. Relevant literature on efforts to increase the power coefficient of tidal turbines shows that the NACA 4418 airfoil profile, known for its stall delay and roughness resistance, can enhance the performance of horizontal-axis tidal turbines. Additionally, the use of diffusers can also improve the power coefficient of the turbine, with larger diffuser angles resulting in higher power coefficients. Based on experimental results with diffuser angles of 10.43° and 15.34°, the highest power coefficient obtained was 34.8%.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kaushik, Mrinal
Abstrak :
This book is intended as a text for undergraduate and graduate courses in aerodynamics, typically offered to students of aerospace and mechanical engineering programs. It covers all aspects of aerodynamics. The book begins with a description of the standard atmosphere and basic concepts, then moves on to cover the equations and mathematical models used to describe and characterize flow fields, as well as their thermodynamic aspects and applications. Specific emphasis is placed on the relation between concepts and their use in aircraft design. Additional topics of interest to the reader are presented in the Appendix, which draws on the teachings provided in the text. The book is written in an easy to understand manner, with pedagogical aids such as chapter overviews, summaries, and descriptive and objective questions to help students evaluate their progress. Atmospheric and gas tables are provided to facilitate problem solving. Lastly, a detailed bibliography is included at the end of each chapter to provide students with further resources. The book can also be used as a text for professional development courses in aerodynamics.
Singapore: Springer Nature, 2019
e20509567
eBooks  Universitas Indonesia Library
<<   1 2   >>