Ditemukan 3 dokumen yang sesuai dengan query
Andry Wijaya
"Ruang metrik-G adalah pasangan (X,G) dengan X adalah himpunan tak kosong yang dilengkapi dengan fungsi G : X ⇥ X ⇥ X ! [0,1) yang memenuhi aksioma-aksioma metrik-G. Ruang metrik-G merupakan perluasan dari ruang metrik (X, d) yang telah dikenal. Aljabar-C⇤ A adalah aljabar Banach atas lapangan C yang dilengkapi involusi ⇤ yang memenuhi ka⇤k = kak dan ka⇤ak = kak2. Kodomain metrik d dan metrik-G diperluas dari [0,1) menjadi A+, yaitu himpunan elemen positif di aljabar-C⇤ A. Ruang metrik bernilai aljabar-C⇤ adalah (X, A, d) dengan d : X ⇥ X ! A+ merupakan fungsi yang memenuhi aksioma-aksioma metrik bernilai aljabar-C⇤. Pada skripsi ini dibahas mengenai ruang metrik-G bernilai aljabar-C⇤, yaitu (X, A,G) dengan G : X⇥X⇥X ! A+ merupakan fungsi yang memenuhi aksioma-aksioma metrik-G bernilai aljabar-C⇤. Lebih lanjut, dibahas aplikasi dari ruang metrik-G bernilai aljabar-C⇤ pada Teorema Titik Tetap.
The G-metric space is a pair (X,G) where X is a non-empty set and G : X ⇥ X ⇥ X ! [0,1) is a function that satisfies the axioms of G-metric. The G-metric space is an extension of the known metric space (X, d). C⇤-algebra A is a Banach algebra over field C with an involution ⇤ that satisfies ka⇤k = kak and ka⇤ak = kak2. The codomain of metric d and G-metric is generalized from [0,1) to A+, where A+ is the set of positive elements in C⇤-algebra A. The C⇤-algebra valued metric space is (X, A, d) where d : X ⇥ X ! A+ is a function that satisfies the axioms of C⇤-algebra valued metric. This undergraduate thesis discusses the C⇤-algebra valued G-metric space, namely (X, A,G) where G : X ⇥ X ⇥ X ! A+ is a function that satisfies the C⇤-algebra valued G-metric axioms. Furthermore, we discuss the application of C⇤-algebra valued G-metric space in Fixed Point Theorem."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Andry Wijaya
"Ruang metrik-G adalah pasangan (X,G) dengan X adalah himpunan tak kosong yang dilengkapi dengan fungsi G: X x X x X -> [0,\infty) yang memenuhi aksioma-aksioma metrik-G. Ruang metrik-G merupakan perluasan dari ruang metrik (X,d) yang telah dikenal. Aljabar-C* A adalah aljabar Banach atas lapangan C yang dilengkapi involusi * yang memenuhi ||a*||=||a|| dan ||a*a||=||a||^2. Kodomain metrik d dan metrik-G diperluas dari [0,\infty) menjadi A^+, yaitu himpunan elemen positif di aljabar-C* A. Ruang metrik bernilai aljabar-C* adalah (X,A,d) dengan d: X x X -> A ^+ merupakan fungsi yang memenuhi aksioma-aksioma metrik bernilai aljabar-C*. Pada skripsi ini dibahas mengenai ruang metrik-G bernilai aljabar-C*, yaitu (X,A,G) dengan G: X x X x X -> A^+ merupakan fungsi yang memenuhi aksioma-aksioma metrik-G bernilai aljabar-C*. Lebih lanjut, dibahas aplikasi dari ruang metrik-G bernilai aljabar-C* pada Teorema Titik Tetap.
The G-metric space is a pair (X,G) where X is a non-empty set and G: X x X -> [0,\infty) is a function that satisfies the axioms of G-metric. The G-metric space is an extension of the known metric space (X,d). C*-algebraA is a Banach algebra over field C with an involution * that satisfies ||a*||=||a|| and ||a*a||=||a||^2. The codomain of metric and G-metric is generalized from [0,\infty) to A^+, where A^+ is the set of positive elements in C*-algebra A. The C*-algebra valued metric space is (X,A,d) where d: X x X -> A^+ is a function that satisfies the axioms of C*-algebra valued metric. This undergraduate thesis discusses the C*-algebra valued G-metric space, namely (X,A,G) where G: X x X x X -> A^+ is a function that satisfies the C*-algebra valued G-metric axioms. Furthermore, we discussed the application of C*-algebra valued G-metric space in Fixed Point Theorem."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ridho Elfapriano Susilo
"Salah satu perumuman dari ruang metrik adalah ruang metrik parsial. Ruang metrik parsial merupakan (X, p) dengan X merupakan himpunan tak kosong dan p : X × X → R merupakan metrik parsial pada X, yaitu pemetaan bernilai R pada X×X yang memenuhi beberapa aksioma. Nilai metrik parsial tersebut dapat diperumum menjadi aljabar-C* unital A, sehingga dibentuk ruang metrik parsial bernilai aljabar-C* (X, A, p) dengan X merupakan himpunan tak kosong dan p : X × X → A merupakan metrik parsial bernilai aljabar-C* pada X, yaitu pemetaan bernilai A pada X × X yang memenuhi beberapa aksioma. Titik tetap dari pemetaan pada suatu himpunan, khususnya ruang metrik, adalah titik yang dipetakan ke dirinya sendiri. Teorema titik tetap merupakan teorema mengenai eksistensi dan ketunggalan titik tetap dari pemetaan pada ruang metrik. Pada skripsi ini, ditentukan dan dibuktikan hubungan ruang metrik parsial bernilai aljabar-C* dengan ruang metrik bernilai aljabar-C*. Selain itu, dibuktikan teorema titik tetap dari pemetaan kontraktif bernilai aljabar-C* pada ruang metrik parsial bernilai aljabar-C*.
One of the extension of metric spaces is partial metric spaces. A partial metric space is a pair (X, p) where X is a nonempty set and p : X × X → R is a partial metric on X, which is a real valued mapping on X × X that satisfy some axioms. The value of partial metrics can be generalized to a unital C*-algebra A, so that we can form a C*-algebra valued partial metric space (X, A, p) where X is a nonempty set and p : X × X → A is a C*-algebra valued partial metric on X, which is a A-valued mapping on X × X that satisfy some axioms. A fixed point of a mapping on a set, particularly metric space, is a point that is mapped to itself. Fixed point theorems are theorems regarding existence and uniqueness of a fixed point of a mapping on metric spaces. In this research, we establish and prove the relations between C*-algebra valued partial metric spaces and C*-algebra valued metric spaces. Furthermore, we prove a fixed point theorem of a C*-algebra valued contractive mapping on C*-algebra valued partial metric spaces."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library