Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Faizah
Abstrak :
ABSTRAK
Litium titanat (Li4Ti5O12) merupakan salah satu alternatif elektroda anoda yang dapat menggantikan grafit pada baterai Li-ion. Kelebihan litium titanat dibandingkan grafit adalah kestabilan struktur kristal hampir tidak mengalami perubahan selama interkalasi dan de-interkalasi ion Li+. Namun litium titanat memiliki kelemahan yaitu konduktivitas listrik dan difusi ion litium yang rendah. Penelitian ini dilakukan proses sintesis dengan menggunakan metode gabungan hidrotermal dan mekanokimia. Proses fabrikasi baterai dengan penambahan material aditif acetylene black (AB) dengan variasi berat 10%, 12% dan 15%. Tujuan penambahan aditif untuk meningkatkan konduktivitas listrik. Karakterisasi material dengan menggunakan SEM-EDS, XRD dan BET. Hasil karakterisasi SEM-EDS menunjukkan persebaran partikel hampir homogen dengan rata-rata ukuran partikel 0,35 μm. Terbentuk fasa spinel Li4Ti5O12 dan TiO2 rutile hasil XRD dan luas permukaan yang terbentuk dengan pengujian BET adalah 2,26 m2/g. Baterai sel koin dibuat sel setengah dengan menggunakan Li4Ti5O12 sebagai katoda dan logam litium sebagai anoda. Uji performa sel baterai dengan electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) dan charge discharge (CD). Nilai konduktivatas yang besar didapatkan pada kadar AB terbanyak. Sedangkan hasil uji cyclic voltammetry dan charge-discharge didapatkan hasil yaitu semakin banyak penambahan kadar AB yang diberikan maka kapasitas spesifik baterai semakin menurun. Kapasitas terbesar pada rate tinggi 10C didapatkan pada kadar 10% dengan kapasitas spesifik sebesar 40,91 mAh/g.
ABSTRACT
Lithium titanate (Li4Ti5O12) could be used as anode electrode in Li-ion battery, replacement graphite in Li-ion battery application. Crystal structure lithium titanate is more stable than graphite, it doesn?t charge during intercalation and de-intercalation process Li+ ions. However, lithium titanate has good stability, the material has lower electrical conductivity and lower lithium ion diffusion. This research, synthesis process were accomplished by using a combinated of hydrothermal and mechanochemical process. In battery fabrication process with an acetylene black conductive (AB) additive of the mass variation was 10%, 12% and 15% in wt. The purpose of using additive acetylene black to increase the electric conductivity. Materials characterization using SEM-EDS, XRD and BET. SEM characterization result show homogeneous distribution of particle with an average particel size of 0.35 μm. Li4Ti5O12 spinel phase and TiO2 rutile XRD result and the surface area formed by BET is 2.26 m2/g. Made coin cell batteries half cell using Li4Ti5O12 as a cathode and lithium metal as the anode. Test performance battery with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge discharge (CD). Conductivity great value obtained at the highest levels of AB. Meanwhile, cyclic voltammetry and charge-discharge testing the result show that higher percentage of AB causing the decrease of battery specific capacity. The capacity specific at a high rate of 10C at a level of 10% with the specific capacity of 40.91 mAh/g.
2016
S62870
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Mochamad Abdurrahman
Abstrak :
ABSTRAK
Penelitian ini membahas pengaruh kadar aditif Acetylene Black terhadap performa baterai lithium ion dengan anoda Li4Ti5O12. Material aktif Li4Ti5O12 untuk anoda baterai ion litium telah berhasil dibuat dari xerogel TiO2 yang dibuat menggunakan metode sol-gel, dilanjutkan dengan proses ball-milling, dan sintering. Identifikasi fasa, morfologi, dan luas permukaan material dikarakterisasi menggunakan pengujian XRD, SEM-EDS, dan BET. Terbentuk fasa spinel Li4Ti5O12 dan TiO2 rutile pada hasil XRD. Morfologi Li4Ti5O12 yang terbentuk menunjukkan adanya aglomerasi. Hasil sintesis Li4Ti5O12 dibuat lembaran elektrodanya dan dicampur dengan binder PVDF (10%wt) dan aditif AB sebesar 10%wt (LTO2 AC-1), 12%wt (LTO2 AC-2), dan 15%wt (LTO2 AC-3). Baterai sel koin dibuat secara setengah sel (half cell) menggunakan elektroda litium. Pengujian performa baterai dilakukan menggunakan cyclic voltammetry (CV), Electro-impendance spectroscopy (EIS), dan charge discharge (CD). Nilai tahanan yang paling tinggi didapatkan pada sampel LTO2 AC-3. Penyebabnya diperkirakan karena terbentuknya produk samping reaksi pada permukaan elektroda di siklus awal karena reaktivitas elektroda LTO2 AC-3 yang tinggi. Kapasitas awal tertinggi didapatkan pada sampel dengan kadar AB 10%wt (LTO2 AC-1) pada pengujian CV dan CD pada rate awal dikarenakan kadar material aktifnya yang paling tinggi. Pada pengujian performa baterai menggunakan Charge-discharge, Rate-capability terbaik didapatkan pada sampel dengan kadar AB 15% dimana terdapat kapasitas sebesar 24,12 mAh/g pada rate 10C dengan kapasitas yang hilang sebesar 71,34%. Dalam penelitian ini disimpulkan bahwa penambahan kadar AB dapat meningkatkan ketahanan siklus dari baterai dan juga akan meningkatkan rate-capability-nya. Peningkatan reaktivitas, luas permukaan, dan konduktivitas dari elektroda diperkirakan menjadi penyebab fenomena ini. Hal ini didukung oleh hasil pengujian EIS, CV, dan CD dari ketiga sampel yang diujikan
ABSTRACT
This research was talking about the influence of Acetylene Black additives content in Li-ion Batteries performance with Li4Ti5O12 anode. Li4Ti5O12 active material for Li-ion batteries anode was successfully made using sol-gel method to form TiO2 xerogel continued with ball-milling and sintering process. XRD, SEM-EDS, and BET, was performed to identify the phase, morphology, and surface area of LTO powder. Spinel Li4Ti5O12 and TiO2 rutile was detected in XRD test. Li4Ti5O12 morphology show presence of agglomerates structure. Electrode sheet then be made with Li4Ti5O12 from previous process and mixed with PVDF binder (10%wt) and AB additives 10%wt (LTO2 AC-1), 12%wt (LTO2 AC-2), and 15%wt (LTO2 AC-3) of total weight solid content. Half cell coin battery was made with lithium counter electrode. Cyclic voltammetry (CV), Electro-impendance spectroscopy (EIS), and charge discharge (CD) test used to examine the battery performance. Highest resistance value obtained in LTO2 AC-3 sample. It may be caused by the formation of side reaction product on electrode surface at initial cycle due to high reactivity of LTO2 AC-3 electrode. Greatest initial capacity at CV test and CD test was obtain in LTO2 AC-1 (10%wt AB) sample, due to highest active material content. When charge-discharge test, the best sample rate-capability performance falls to LTO2 AC-3 sample (15%wt AB), where there was still have 24.12 mAhg of discharge capacity at 10 C with 71.34% capacity loss. In this research, writer conclude that Increasing AB content could lead to rate-capability and cycling performance improvement. Reactivity, surface area, and conductivirty enhancement in electrode may be caused by this phenomenon. This fact supported by charge-discharge, cyclic voltammetry, and electro-impendance spectroscopy data.;
2016
S65655
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nita Dianova
Abstrak :
Litium titanat (Li4Ti5O12) merupakan salah satu alternatif elektroda anoda yang dapat menggantikan grafit pada baterai Li-ion. Kelebihan litium titanat dibandingkan grafit adalah kestabilan struktur kristal hampir tidak mengalami perubahan selama interkalasi dan de-interkalasi ion Li+. Namun seiring dengan kebutuhan akan baterai dengan kapasitas yang tinggi, kian mendorong untuk meningkatkan kapasitas baterai Li-ion. Salah satu cara yang dapat dilakukan untuk meningkatkanya adalah dengan menggabungkanya dengan material silikon yang memiliki kapasitas yang tinggi mencapai 4200 mAh/g. Namun ekspansi volume Si menyebabkan keruntuhan elektroda dan hilangnya kapasitas. Oleh karna itu digunakanlah Si nano untuk meminimalisir efek ekspansi volume. Penelitian ini dilakukan proses fabrikasi baterai dengan penambahan Si nano partikel dengan variasi berat 5%, 10% dan 15%. . Karakterisasi material awal Si nano dengan menggunakan TEM-EDS dan XRD menunjukan adanya unsur oksigen dan fasa SiO pada partikel Si nano. Baterai sel koin dibuat sel setengah dengan menggunakan Li4Ti5O12 sebagai katoda dan logam litium sebagai anoda. Uji performa sel baterai dengan electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) dan charge discharge (CD). Nilai konduktivitas semakin menurun seiring dengan peningkatan kadar Si nano, pada hasil pengujian CV menunjukan kapasitas paling tinggi pada penambahan 5% Si nano yaitu mencapai 197,09. Hasil pengujian CD menunjukan semakin meningkatnya kadar Si nano kapasitasnya semakin menurun ...... Lithium titanate (Li4Ti5O12) could be used as anode electrode in Li-ion battery, replaces graphite in Li-ion battery application. Crystal structure lithium titanate is more stable than graphite, it doesn?t changing during intercalation and de-intercalation process Li+ ions. but along with a high demand for batteries with high capacity, leading to increase the capacity of Li-ion batteries. that can be improved by combining LTO with the silicon material that has a high capacity reached about 4200 mAh/g, but the volume expansion properties of silicon led to collapse and lost its capacity. Therefore nanoscale silicon is used to minimize the effect of their expansion. This research carried out fabrication process li-ion battery with the addition of silicon nano material with variation weight 5%,10% and 15%. First, nano silicon initial material characterization using TEM-EDS and XRD, showed the presence of the element oxygen and SiO phase on Si nano particles. Then charaterized in coin cell types, half cell using Li4Ti5O12 as a cathode and lithium metal as the anode. Furthermore, battery performance tested with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge discharge (CD). From EIS testing, the conductivity values descrease along with increasing weight of Si nano particles. The CV showed the highest capacity on the addition of 5% Si nano, reaching 197,09. The CD showed the increasing weight of Si nano, the capacity descrease.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64613
UI - Skripsi Membership  Universitas Indonesia Library
cover
Musthafa Mursyid
Abstrak :
ABSTRAK
Li4Ti5O12 lithium titanate merupakan salah satu material anoda yang mempunyai performa yang cukup baik karena tidak mengalami SEI Solid Electrolyte Interface . Li4Ti5O12 disintesis menggunakan metode sol-gel dan Solid state dengan memakai sumber ion lithium LiCO3. SiOC merupakan material keramik yang disintesis dari silicon oil untuk memperbaiki kelemahan Li4Ti5O12. Silikon oil dicampurkan secara langsung dengan Li4Ti5O12 dan diaduk didalam beaker glass, kemudian dilakukan pemanasan pada suhu 350oC.. XRD menunjukan adanya fasa spinel LTO, TiO2 dan dengan kadar Si kristalin sangat sedikit. Melalui perhitungan didapatkan ukuran partikel Li4Ti5O12 sebesar 0,08 ?m. SEM-EDX menunjukan persebaran unsur-unsur pada sampel, dimana Si, C, dan O merupakan unsur utama penyusun SiOC. Pada pengujian EIS, penambahan kadar silicon oil menyebabkan Nilai hambatan dari material anoda LTO meningkat artinya konduktivitas dari material anoda mengalami penurunan. Pada pengujian CV, penambahan kadar silicon oil menurunkan kapasitas spesifik dari baterai, disebabkan oleh penurunan kualitas LTO ketika dilakukan pemanasan lanjut dan terbentuknya produk samping pengotor dari silicon oil tersebut yang menghambat pergerakan ion litium ketika proses litiasi dan delitiasi.
ABSTRAK
Li4Ti5O12 lithium titanate is one of the most promising material for anode, because reducing the form of SEI. Li4Ti5O12 were synthesized by sol gel and solid state method with LiCO3 as lithium ion source. SiOC is a ceramic material that synthesized from silicon oil to overcome the weakness of Li4Ti5O12. Silicon oil is adding to Li4Ti5O12 powder and mixed in the beaker glass, subsequently heated at 350oC. XRD shows the existed of LTO spinel, TiO2 and small amount of Si crystalline. From calculation the size of Li4Ti5O12 particle is measured the value is 0,08 m. SEM EDX shows the distribution of element on the sample, where Si, O, and C are the main element that construct the SiOC ceramic. The lowest electrolyte resistance obtained at pure Li4Ti5O12. With the increasing silicon oil value, the specific capacity of battery decreased from CV. It is because of heated the quality of Li4Ti5O12 is decreased and forming a side product that inhibit the movement of lithium ion during lithiation and delithiation.
2017
S68032
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ditya Kholil Ibrahimi
Abstrak :
Dalam rangka meningkatkan performa anoda litium titanat, penelitian ini difokuskan pada doping ion Ca2 untuk mensubtitusi ion Li membentuk Li4-xCaxTi5O12 dengan nilai x=0, 0.05, 0.075, dan 0.125 dengan menggunakan metode solid-state. Sumber ion Ca2 adalah CaCO3 yang berasal dari cangkang telur ayam yang sudah dibersihkan, dihaluskan dan dikeringkan. Dopant ini dikarakterisasi untuk mengetahui komponen fasa utama melalui pengujian XRD dan SEM-EDS. Serbuk sampel LTO pristine dan yang didoping dikarakterisasi dengan XRD, SEM-EDS, STA, dan FTIR. dan juga diuji performa elektrokimianya dengan EIS, CV dan CD. Hasil karakterisasi dopant CaCO3 dari cangkang telur menunjukkan komponen fasa utama CaCO3 dengan polimorf calcite, dengan morfologi butiran partikel halus teraglomerasi yang memiliki kemurnian tinggi. Karakterisasi serbuk sampel material anoda menggunakan uji XRD menunjukkan dopant Ca berhasil masuk kedalam struktur spinel LTO, dengan kadar penambahan maksimum x=0.05 dimana penambahan berlebih menghasilkan impuritas CaTiO3. Hasil SEM memperlihatkan semua sampel doping memiliki morfologi yang hampir serupa, partikulat teraglomerasi. Sampel LTO yang didoping ion Ca2 memiliki ukuran partikel yang lebih kecil jika dibandingkan dengan LTO tanpa doping. Peningkatan konduktivitas elektronik terlihat pada sampel yang didoping, dengan nilai hambatan terendah ditunjukkan oleh Li3.875Ca0.125Ti5O12 dengan Rct terendah yaitu 39.5 ?. Li3.875Ca0.125Ti5O12 juga memiliki initial discharge capacity tertinggi dengan nilai 168.2 mAh/g. Akan tetapi pada aplikasi rate tinggi, performa terbaik ditunjukkan oleh Li3.925Ca0.075Ti5O12 dengan kapasitas discharge 30.2 mAh/g pada 12 C, dimana persentasi retensi kapasitasnya sebesar 21.43 dibandingkan dengan kapasitas discharge pada rate 0.2 C. ...... In order to improve the performance of Li4Ti5O12 LTO anode, this research was focused on Ca2 ion doping as substitute to Li ion to form Li4 xCaxTi5O12 with values of x 0, 0.05, 0.075, and 0.125 using solid state reaction. The Ca2 ion source was CaCO3 which synthesized from chicken eggshell that has been washed, grounded and dried. The dopant was characterized to determine the main phase component by XRD and SEM EDS. Pristine LTO and Ca doped LTO sample powder was characterized by XRD, SEM EDS, STA, FTIR and was also tested its electrochemical performance by EIS, CV and CD. The CaCO3 dopant characterization results showed CaCO3 in calcite polymorph as the main phase, with agglomerated fine particulate morphology and high purity. Characterization of LTO sample powder with XRD revealed that dopant Ca successfully enter the structure of LTO spinel, with maximum addition level x 0.05, which excessive addition led to CaTiO3 impurity forming. SEM result showed all Ca doped LTO have almost similar morphology, which was agglomerated particulate. Ca doped LTO samples have smaller particle size compared to pristine LTO. Electronic conductivity improvement was spotted at all of Ca doped LTO sample, with Li3.875Ca0.125Ti5O12 showed the lowest charge transfer resistance of 39.5 . Li3.875Ca0.125Ti5O12 also had the highest initial discharge capacity of 168.2 mAh g. Nevertheless, in high rate application, the best performance was showed by Li3.925Ca0.075Ti5O12 with discharge capacity of 30.2 mAh g at 12 C, which capacity retention percentage of 21.43 compared to discharge capacity at 0.2 C.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faisal Aldy
Abstrak :
Li4Ti5O12 lithium titanate disintesis menggunakan metode sol-gel dan hidrotermal dengan memakai sumber ion lithium LiOH. Anoda komposit Li4Ti5O12/Sn dipreparasi menggunakan metode ball mill dengan 3 variasi Sn. XRD menunjukkan fasa spinel, TiO2, dan Sn. SEM memperlihatkan bahwa partikel Li4Ti5O12 memiliki ukuran berkisar 20-50 ?m dan ukuran partikel Sn berkisar 2-70 ?m. Nilai hambatan elektrolit terendah didapatkan pada kadar Sn terbesar. Peningkatan kadar Sn dapat meningkatkan kapasitas spesifik dari baterai pada uji CV. Reaksi alloying dan dealloying LixSn mengakomodasi peningkatan kapasitas spesifik pada C/D. Namun, volume ekspansi dari LixSn menyebabkan hilangnya kapasitas saat C rate meningkat. Kapasitas terbesar pada laju charge/discharge rendah dan tinggi didapatkan pada kadar Sn terbesar. ...... Li4Ti5O12 lithium titanate were synthesized by sol gel and hydrothermal method with LiOH as lithium ion source. Li4Ti5O12 Sn composites anode were preparared by ball mill method with three of Sn variation. XRD shows spinel, TiO2, and Sn phases. SEM shows that Li4Ti5O12 particles are around 20 50 m size and Sn particles are around 2 70 m size. The lowest electrolyte resistance obtained at the highest Sn value. With the increasing Sn value, the specific capacity of battery can be increased from CV. Alloying and dealloying reaction of LixSn accomodate the increased specific capacity from C D. However, volume expansion from LixSn leads to loss of capacity when the C rate increases. The capacity at low and high charge discharge rate obtained at the highest Sn value.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66450
UI - Skripsi Membership  Universitas Indonesia Library
cover
Slamet Priyono
Abstrak :
Sintesis serbuk Li4Ti5O12 yang didoping atom Al dan Na untuk material anoda pada baterai ion lithium telah berhasil dilakukan dengan metode reaksi padat. Doping Al pada Li4Ti5O12 bertujuan untuk menaikkan konduktifitas ionik dan memperkuat struktur sedangkan doping Na bertujuan untuk menurunkan tegangan operasi. Pendopingan dilakukan dengan mengikuti persamaan Li(4-(x/3+y))AlxNayTi(5-2x/3)O12 (x=0; 0,025; 0,05; 0.075 dan y= 0;1) dimana atom Al mensubtitusi Ti dan Li sedangkan atom Na mensubtitusi Li. Sintesis dilakukan melalui metoda metalurgi serbuk dengan menggunakan Li2CO3, TiO2-anatase, Al2O3 and Na2CO3 sebagai bahan baku. Pada penelitian ini, pengaruh subtitusi Na dan Al dalam Li4Ti5O12 terhadap struktur, morphologi, ukuran partikel, surface area dan performa elektrokimia diteliti secara detil. Hasil penelitian menunjukkan bahwa doping ion Al pada Li4Ti5O12 tidak merubah struktur kristal Li4Ti5O12. Hasil FTIR menkonfirmasi tidak adanya perubahan struktur spinel pada gugus khas ketika didoping Al, dengan meningkatnya doping Al membuat tekstur butir menjadi berpori, ukuran partikel menurun dengan ukuran terkecil 20,32 μm, surface area meningkat dengan nilai tertinggi 8,25 m2/gr, konduktifitas ionik meningkat dengan konduktifitas terbaik adalah 8,5 x 10-5 S/cm, tegangan kerja sekitar 1,55 V dan kestabilan siklus terbaik diperoleh pada doping Al 0,025 dengan kapasitas maksimum 70 mAh/g. Sedangkan doping Na dalam Li4Ti5O12 menyebabkan perubahan struktur dengan terbentuk 3 phasa baru yaitu NaLiTi3O7, Li4Ti5O12, dan Li2TiO3. Perubahan struktur juga dikonfirmasi dengan perubahan gugus khas hasil analysis FTIR. Sedangkan kenaikan doping Al menyebabkan phasa NaLiTi3O7 semakin dominan, tekstur butiran menjadi halus, ukuran partikel menurun dengan ukuran terkecil 30,89 μm, surface area menurun, konduktifitas ionic stabil pada 2,5 x 10-5 S/cm, potensial kerja di 1,3 V dan 1,55V, kestabilan struktur didapat pada doping Al 0,05 dengan kapasitas 90 mAh/g. Secara keseluruhan menunjukkan bahwa penambahan doping Al mampu meningkatkan konduktifitas ionik dan kestabilan siklus dan doping Na menurunkan tegangan kerja. ...... Synthesis of Li4Ti5O12 powder doped by Al and Na atoms for lithium ion battery anodes had been carried out using solid state reaction. Al doped on Li4Ti5O12 aim is to increase the ionic conductivity and strengthen the structure of Li4Ti5O12 while Na doped aimed is to decrease the operating voltage. Al and Na doped on Li4Ti5O12 had been carried out by following equation Li(4 - (x / 3 + y))AlxNayTi(5-2x/3)O12 (x = 0; 0,025; 0.05, 0.075 and y = 0, 1) where the Al atoms substitute Ti and Li while Na substituting Li atoms. Synthesis is conducted through a solid state reaction by using Li2CO3, TiO2-anatase, Al2O3 and Na2CO3 as raw materials. In this study, the effects of substitution of Na and Al in Li4Ti5O12 on the structure, morphology, particle size, surface area, and electrochemical performance were deep studied. The results showed that the Al doped on the Li4Ti5O12 was not change crystal structure of Li4Ti5O12. FTIR results confirmed that the absence of changes spinel structure in fingerprint region when doped Al, with increasing Al doped make textures porous grains, particle size decreases to 20.32 μm, surface area increases with highest value of 8.25 m2/gr, conductivity is increased with the best conductivity 8.5 x 10-5 S/cm, , the working voltage of about 1.55 V and the best cycle stability was obtained on doping Al 0.05 and the maximum capacity is 70 mAh/g. While doping Na in Li4Ti5O12 caused structural changes to the three phases formed NaLiTi3O7, Li4Ti5O12, and Li2TiO3. Tranformation on the structure is also confirmed by the changes in the fingerprint region with FTIR analysis. While the increase in Al doping causes NaLiTi3O7 phase become dominant, texture of granular becomes bigger and smoother, the particle size decreases to 30.89 μm, surface area decreases, the ionic conductivity was stable at 2.5 x 10-5 S/cm, The working potential in 1, 3 V and 1.55 V, the stability of the structure obtained on doping Al 0.05 and the maximum capacity of 90 mAh/g. Overall showed that the addition of Al doped can improve the ionic conductivity while stability of the cycle and the Na doped decrease the working voltage.
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42630
UI - Tesis Membership  Universitas Indonesia Library