Ditemukan 4 dokumen yang sesuai dengan query
Amnia Salma
"Retinopati Diabetik (RD) merupakan salah satu penyakit yang dapat menyebabkan penurunan fungsi penglihatan pada mata, bahkan dapat menyebabkan kebutaan jika penanganan yang dilakukan tidak tepat. Upaya penanganan penyakit RD dapat dilakukan dengan deteksi dini. Melalui pendeteksian dini, pasien RD dapat diobati sesuai dengan tingkat keparahan yang diderita. Namun, pemeriksaan penyakit RD membutuhkan waktu yang lama dan hanya dapat dilakukan oleh profesional.
Para peneliti telah mengembangkan sistem deteksi pengklasifikasian penyakit RD yang dengan memanfaatkan perkembangan teknologi seperti penerapan Artifficial Intelligence (AI) pada gambar fundus. Dalam penelitian ini, peneliti mengaplikasikan Attention Mechanism (AM) pada Convolutional Neural Network (CNN) untuk selanjutnya menganalisis dan mengevaluasi hasil dari kinerja algoritma tersebut dalam mengklasifikasikan RD ke dalam level normal, mild, moderate, severe dan PDR. AM berfokus pada daerah yang berpenyakit dan CNN digunakan untuk proses klasifikasi. Arsitektur CNN yang digunakan adalah AlexNet dan GoogleNet. Phyton digunakan sebagai bahasa pemrograman dengan perpustakaan Pytorch. Hasil performa akurasi yang paling tinggi diperoleh oleh GoogleNet dan AM dengan capaian akurasi mencapai 85%. Performa model pada tiap-tiap kelas menunjukkan nilai akurasi terbaik pada kelas normal, severe, dan PDR dengan capaian nilai f-1 score masing-masing 86%, 90% dan 95%. Sementara untuk kedua kelas lainnya yaitu mild dan moderate cenderung lebih rendah, yaitu 73% dan 76%. Hal ini menunjukkan bahwa model mampu mengklasifikasikan kelas normal, Severe, dan PDR lebih baik daripada mild dan moderate.
Diabetic retinopathy (DR) is a disease that can cause decreased vision function in the eye, and can even lead to blindness. Efforts to treat DR disease can be done with early detection. Through early detection, DR patients can be treated according to their severity. However, DR disease examination takes a long time and can only be done by a professional.Researchers have developed a detection system for classifying DR disease by technological developments such as the application of Artifficial Intelligence to fundus images. In this study, the researchers applied the Attention Mechanism (AM) to CNN to further analyze and evaluate the results of the algorithm's performance in classifying RD into normal, mild, moderate, severe and PDR levels. AM focused on pathological area in the fundus images and CNN is used as classifier. We used Architecture of CNN such AlexNet and GoogleNet. The results of the highest accuracy performance were obtained by GoogleNet and AM with the achievement of 85%. The performance of the model in each class shows the best accuracy values in the normal, severe, and PDR classes with the achievement of f-1 scores of 86%, 90% and 95%, respectively. Meanwhile, the other two classes, namely mild and moderate, tended to be lower, namely 73% and 76%. This shows that the model is able to classify normal, severe, and PDR classes better than mild and moderate."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Fahad Husen
"Klasifikasi fase pertumbuhan padi sangat berguna untuk memprediksi hasil panen tanaman padi. Saat ini perhitungan produksi padi masih dilakukan dengan menggunakan metode konvensional, yakni dengan cara melakukan pengukuran langsung ke lapangan yang hasilnya masih bersifat subjektif, membutuhkan biaya yang mahal, dan menghabiskan banyak waktu. Salah satu upaya yang dapat dilakukan untuk mengatasi masalah ini adalah dengan memanfaatkan kemajuan teknologi penginderaan jarak jauh (
remote sensing) menggunakan data citra satelit. Pada penelitian ini, dilakukan pengenalan tahap tumbuh padi pada data pixel citra satelit LANDSAT-8, daerah Karawang, Jawa Barat. Penelitian ini mengusulkan pengembangan sebuah sistem klasifikasi fase pertumbuhan padi di Indonesia. Metode yang diusulkan adalah pemanfaatan informasi dari pixel tetangga dengan pembobotan menggunakan metode
attention mechanism. Dari hasil percobaan, dibandingkan dengan penelitian sebelumnya didapat kenaikan akurasi yang cukup baik. Dan akurasi terbaik pada penelitian ini sebesar 85% untuk data yang digabungkan dengan beberapa fitur index vegetasi.
Classification of paddy growth phase is very useful for predicting the rice plant yields. Recently, rice yields calculation is still measured in the rice field area which is spend a lot of time and cost. It can be reduced by using technology such as remote sensing. In this research, information from pixel neighbor is used as feature by calculate its weight using attention mechanism method. The experiment result get good increase in accuracy value compared to previous study with 85% of accuracy."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2017
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Eka Qadri Nuranti B.
"Pertumbuhan dokumen putusan pengadilan sangat pesat, setiap bulannya bertambah hingga kurang lebih sebanyak 100.000 dokumen dan 94% diantaranya merupakan putusan pengadilan tingkat pertama. Meskipun sistem hukum Indonesia menganut sistem civil law yang mengutamakan perundang-undangan sebagai sumber hukum, namun salah satu sumber pertimbangan hukum dapat bersumber dari putusan hakim terdahulu (yurisprudensi). Oleh karena pertumbuhan dan kebermanfaatan yurisprudensi dalam memutuskan suatu perkara, sangat sulit menemukan informasi atau memanfaatkan dokumen yang bersesuaian dengan kasus yang dihadapi. Penelitian ini melakukan suatu prediksi masa hukuman putusan pengadilan tingkat pertama dengan memanfaatkan yurisprudensi menggunakan Multi-Level Learning CNN+Attention. Hasil dari eksperimen ini mendapatkan kombinasi fitur terbaik yang diperoleh dari dokumen yaitu dengan menggunakan fitur informasi dari riwayat_tuntutan, fakta, fakta_hukum, dan pertimbangan_hukum. Prediksi dilakukan dengan cara category prediction dan regresion prediction. Pada category prediction membuktikan bahwa model Multi- Level CNN+Attention mendapatkan akurasi yang lebih baik dibandingkan model deep learning lainnya yaitu sebesar 77.32%. Untuk regresion prediction menunjukkan bahwa label amar putusan representasi tahun menghasilkan R2-Score lebih baik dibanding representasi hari dan bulan dengan peningkatan sebesar 28.51% dan 25.62%.
The growth of court decision documents has been extremely rapid, each month increasing to approximately 100,000 cases, and 94% of them are court decisions of the first-level case. Although the Indonesian legal system adheres to a civil law system that prioritizes legislation as a source of law, one source of legal considerations can come from previous judges' decisions (jurisprudence). Because of jurisprudence's growth and usefulness in deciding a case, it is complicated to find information or use documents relevant to the topic at hand. This study conducted a prediction of first-level judicial decisions by utilizing jurisprudence using Multi- Level Learning CNN+Attention. This experiment's results get the best combination of features obtained from the document, namely by using the features of prosecution history, facts, legal facts, and legal considerations. Prediction is made through category prediction and regression prediction. The category prediction proves that the Multi-Level CNN+Attention model gets better accuracy than other deep learning models, which is 77.32%. The regression prediction shows the label of year representation decision results in a better R2-Score than the representation of days and months with an increase of 28.51% and 25.62%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Derwin Suhartono
"
ABSTRAKArgumentation mining merupakan bidang penelitian yang berfokus pada kalimat dengan tipe argumentasi. Kalimat argumentasi sering digunakan pada komunikasi sehari-hari serta memiliki peran penting pada setiap proses pengambilan keputusan atau kesimpulan. Tujuan penelitian ini adalah untuk melakukan observasi mengenai pemanfaatan deep learning dengan mekanisme atensi pada anotasi dan analisa kalimat argumentasi.Anotasi argumentasi merupakan pengelompokan komponen argumen dari sebuah wacana ke dalam beberapa kelas. Kelas didefinisikan menjadi 4, yaitu major claim, claim, premise dan non-argumentative. Analisa argumentasi mengarah kepada karakteristik dan validitas argumentasi yang tersusun pada topik tertentu. Salah satu bentuk analisa adalah penilaian apakah argumentasi yang dibentuk sudah terkategori sufficient atau belum. Dataset yang digunakan untuk anotasi dan analisa argumentasi adalah 402 esai persuasif. Dataset ini juga ditranslasikan ke dalam Bahasa Indonesia untuk memberikan gambaran bagaimana model bekerja pada bahasa lain.Beberapa model deep learning, diantaranya CNN Convolutional Neural Network , LSTM Long Short-Term Memory , dan GRU Gated Recurrent Unit digunakan untuk anotasi dan analisa argumentasi sedangkan HAN Hierarchical Attention Network hanya digunakan untuk analisa argumentasi. Mekanisme atensi ditambahkan pada model sebagai pemberi weighted access untuk performa yang lebih baik. Classifier yang digunakan adalah fully connected layer dan XGBoost.Dari eksperimen yang dilakukan, integrasi deep learning dengan mekanisme atensi untuk anotasi dan analisa kalimat memberikan hasil yang lebih baik dari penelitian sebelumnya.
ABSTRACTArgumentation mining is a research field which focuses on sentences in type of argumentation. Argumentative sentences are often used in daily communication and have important role in each decision or conclusion making process. The research objective is to do observation in deep learning utilization combined with attention mechanism for argument annotation and analysis.Argument annotation is argument component classification from discourse to several classes. Classes include major claim, claim, premise and non-argumentative. Argument analysis points to argumentation characteristics and validity which are arranged in one topic. One of the analysis is how to assess whether an established argument is categorized as sufficient or insufficient. Datased used for argument annotation and analysis is 402 persuasive essays. This data is translated to Bahasa as well to give overview about how does it work with other language.Several deep learning models such as CNN Convolutional Neural Network , LSTM Long Short-Term Memory , and GRU Gated Recurrent Unit are utilized for argument annotation and analysis while HAN Hierarchical Attention Network is utilized only for argument analysis. Attention mechanism is combined with the model as weighted access setter for a better performance. The classifiers are fully connected layer and XGBoost.From the whole experiments, deep learning and attention mechanism integration for argument annotation and analysis arrives in a better result compared with previous research."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2018
D2502
UI - Disertasi Membership Universitas Indonesia Library