Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Aditya Yudiana
"Zinc Oxide ZnO merupakah salah satu bahan semikonduktor yang banyak diteliti sebagai fotokatalis, namun salah satu kelemahan ZnO adalah rekombinasi yang cepat antara elektron dengan hole yang mengakibatkan efisiensi aktifitas fotokatalitik rendah. Salah satu upaya untuk menekan rekombinasi ini adalah dengan membuat struktur komposit ZnO dengan nanopartikel logam mulia Au dan Ag yang dapat menangkap elektron. Pada penelitian ini dilakukan sintesis nanopartikel AuAg pada nanorod ZnO yang ditumbuhkan di atas kaca dengan metode one-pot hydrothermal. Rasio mol prekursor Au:Ag 1:0 ; 3:1 ; 1:1 ; 1:3 dan 0:1.
Hasil FESEM dan TEM menunjukkan bahwa umumnya nanopartikel Au terbentuk dengan diameter 15-30 nm cukup banyak di permukaan nanorod ZnO. Dengan penambahan unsur Ag terlihat jumlah nanopartikel yang terbentuk lebih sedikit dan ukurannya menjadi lebih beragam bahkan terjadi aglomerasi. Nanopartikel AuAg yang terbentuk memiliki struktur kristal fcc dengan bidang dominan 111.

Zinc Oxide ZnO is one of the most studied semiconductor materials as a photocatalyst, but one of the weaknesses of ZnO is rapid recombination between electrons and holes resulting in low photocatalytic activity efficiency. One attempt to suppress this recombination is to create a ZnO composite structure with noble metal nanoparticles Au and Ag that can capture electrons. In this study, the synthesis of AuAg nanoparticles on ZnO nanorods was grown on glass by one pot hydrothermal method. The mole ratio of Au precursors Ag 1 0 3 1 1 1 1 3 and 0 1.
FESEM and TEM results show that generally Au nanoparticles are formed with a diameter of 15 30 nm in large number on the surface of ZnO nanorods. With the addition of Ag elements it is seen that the number of nanoparticles formed is less and the size becomes more diverse and even the agglomeration occurs. The AuAg nanoparticles formed have an face center cubic crystal structure with a dominant 111 crystal plane.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50713
UI - Tesis Membership  Universitas Indonesia Library
cover
Mayda Shaila Putri
"Gas karbon dioksida (CO2) merupakan penyumbang utama gas rumah kaca di atmosfer yang berpotensi besar sebagai penyebab pemanasan global. Adanya Sel Fotoelektrokimia (PEC, Photoelectrochemical cells) yang digunakan untuk reaksi reduksi dapat diterapkan dalam konversi CO2 menjadi senyawa yang bernilai. Penelitian ini telah berhasil mensintesis nanopartikel AuAg dan nanopartikel CuBi2O4 (CBO), serta nanokomposit CuBi2O4/AuAg. Semua material telah dikarakterisasi dengan XRD, spektroskopi UV-Vis, dan UV-Vis DRS. Fotokatoda FTO/CuBi2O4 untuk sel fotoelektrokimia, berhasil dibentuk menggunakan metode doctor blade dan preparasi FTO/CuBi2O4/AuAg dilakukan dengan cara mencelupkan FTO/CuBi2O4 ke dalam larutan nanopartikel AuAg dengan variasi waktu pencelupan selama 10 detik, 30 detik, dan 50 detik. Fotokatoda FTO/CuBi2O4/AuAg pada perendaman 50 detik memberikan nilai potensial onset paling positif sebesar -0,038 V dan stabilitas arus foto sebesar 73,33%. Hasil uji seluruh produk Fotokatoda, dengan sistem fotoelektrokimia menggunakan Linear Sweep Voltammetry (LSV), didapatkan bahwa Fotokatoda FTO/ CuBi2O4/AuAg 50s memberikan kinerja arus katodik terbaik dalam reaksi reduksi untuk konversi ion bikarbonat dalam sistem PEC. Namun, pada pengujian Chronoamperometry, FTO/ CuBi2O4/AuAg 30s menghasilkan stabilitas foto arus terbaik mencapai 82.56%.

Carbon dioxide (CO2) gas is the main contributor to greenhouse gases in the atmosphere, which is most likely the cause of global warming. The existence of Photoelectrochemical Cells (PEC) is used for reduction reactions and it can be applied in the conversion of CO2 into valuable compounds. This research has succeeded in synthesizing AuAg nanoparticles, CuBi2O4 (CBO) nanoparticles, and CuBi2O4/AuAg nanocomposites. All materials were characterized by XRD, UV-Vis spectroscopy, and UV-Vis DRS. The FTO/CuBi2O4 photocathode for photoelectrochemical cells was successfully formed using the doctor blade method and the FTO/CuBi2O4/AuAg preparation was carried out by dipping FTO/CuBi2O4 into a solution of AuAg nanoparticles with variations in immersion time of 10 seconds, 30 seconds, and 50 seconds. Photocathode FTO/CuBi2O4/AuAg immersion for 50 seconds gave the most positive onset potential value of -0.038 V and the photo current stability was 73.33%. The test results of all photocathode products, with a photoelectrochemical system using Linear Sweep Voltammetry (LSV), it was found that the FTO/CuBi2O4/AuAg 50s photocathode gave the best cathodic current performance in the reduction reaction for the conversion of bicarbonate ions in the PEC system. However, in Chronoamperometry, FTO/CuBi2O4/AuAg 30s produced the best photo current stability of 82.56%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anita Eka Putri
"Penggunaan ZnO nanorods (ZnO NRs) dalam aplikasi fotokatalitik untuk mendegradasi polutan organik menarik untuk dikembangkan kerana sifat optik yang unik, murah, tidak bersifat racun dan proses sintesis yang relatif sederhana. Namun, ZnO NRs memiliki kekurangan disebabkan oleh adanya peristiwa rekombinasi yang mengurangi produksi elektron bebas dan hole, sehingga dikembangkan nanokomposit ZnO/Au dimana elektron yang telah tereksitasi akan pindah ke permukaan Au yang berperan sebagai pemerangkap elektron. Pada umumnya struktur nano logam mulia yang dibuat berbentuk bulat, dan pada penelitian ini dilakukan sintesis partikel anisotropik Au dan AuAg diatas permukaan ZnO untuk aplikasi sebagai fotokatalis degradasi methylene blue yang masih jarang dilakukan. Pada penelitian ini telah dilakukan sintesis nanopartikel Au dan AuAg dengan menggunakan beberapa metode sintesis yang menghasilkan Au mesoflowers (MFl), Au mesostars (MSs), AuAg nanoflowers (NFl) dan AuAg mesopops (MPOPs). Aktifitas fotokatalitik terbaik diperoleh nanokomposit ZnO NRs/AuAg NFl mencapai 96% degradasi MB dibawah UV dan 75% dibawah cahaya tampak selama 300 menit. Lebih tingginya aktifitas fotokatalitik ZnO NRs/AuAg NFl dibanding dengan struktur lainnya mungkin disebabkan karena daerah interface antara ZnO dengan AuAg NFl lebih tinggi, bimetalik AuAg memiliki sifat katalitik yang lebih baik daripada monometalik Au, dan bentuk AuAg NFl yang terdiri dari nanopartikel kecil dapat memudahkan elektron untuk bereaksi dengan larutan MB.

The use of ZnO nanorods (ZnO NRs) in photocatalytic applications to degrade organic pollutants is attractive to be developed because of the unique optical properties, inexpensive, non-toxic and relatively simple synthesis process. However, ZnO NRs has disadvantages due to the recombination that reduce the production of free electrons and holes, so that ZnO/Au nanocomposites are proposed where the excited electrons will move to the Au surface that acts as electron traps. In general, noble metal nanostructures are made in a round shape, and in this study the synthesis of anisotropic Au and AuAg particles on the ZnO surface for application as a photocatalyst of degradation of methylene blue is still rarely done. In this study the synthesis of Au and AuAg nanoparticles has been carried out using several synthesis methods that produce Au mesoflowers (MFl), Au mesostars (MSs), AuAg nanoflowers (NFl) and AuAg mesopops (MPOPs). The best photocatalytic activity was obtained by ZnO NRs/AuAg NFl nanocomposite reaching 96% degradation of MB under UV and 75% under visible light for 300 minutes. The higher photocatalytic activity of ZnO NRs/AuAg NFl compared to other structures may be due to the higher interface area between ZnO and NFl AuAg, bimetallic AuAg has better catalytic properties than monometallic Au, and NFl AuAg consists of small nanoparticles that can facilitate electrons to react with the MB solution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T54397
UI - Tesis Membership  Universitas Indonesia Library
cover
Anggita Putri Mentari
"Fotoelektrokimia water splitting merupakan salah satu metode penghasil hidrogen yang paling menjanjikan. Salah satu material semikonduktor yang cocok digunakan sebagai fotoanoda untuk aplikasi water splitting adalah ZnO. Namun, ZnO memiliki beberapa kekurangan yang dapat diatasi dengan menggabungkan ZnO dengan logam mulia. Pada penelitian ini, ZnO Nanorods (NRs) disintesis dengan metode hidrotermal dan kemudian dideposisi dengan AuAg Mesoflowers (MFs) yang disintesis dengan metode wet chemistry. Hasil pengujian linear sweep voltamogram (LSV) dibawah cahaya tampak dan AM 1.5 G menunjukkan ZnO/AuAg MFs menghasilkan photocurrent tertinggi pada reaksi OER maupun HER dengan efisiensi tertinggi 0,034% pada tegangan 0,874 V vs RHE. AuAg MFs juga berperan sebagai donor elektron yang diinjeksikan ke pita konduksi ZnO sehingga dapat meningkatkan photocurrent yang dihasilkan.

Photoelectrochemical separation of water is one of the most promising methods of producing hydrogen. One of the most suitable semiconductor materials used as photoanodes for water splitting applications is ZnO. However, ZnO has several drawbacks that can be overcome by combining it with noble metals particles. In this study, ZnO nanorods (NRs) were synthesized by the hydrothermal method and then deposited with AuAg Mesoflowers (MFs) which was synthesized by the wet chemical method. The linear sweep voltammogram (LSV) measurement under visible light and AM 1.5 G show that ZnO / AuAg MFs produces the highest photocurrent in the OER and HER reactions with the highest efficiency of 0.034% at a voltage of 0.874 V vs RHE. AuAg MFs may acts as an electron donor that is injected into the ZnO conduction band so that it can increase the photocurrent."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zaki Al Aziz
"Limbah pewarna tekstil merupakan salah satu penyumbang terbesar pencemaran air di dunia. Limbah pewarna tekstil bersifat cukup stabil dan sulit didegradasi pada ekosistem perairan. Salah satu teknik yang dapat mengatasi limbah pewarna tekstil adalah teknik Advanced Oxidation Process (AOPs), yang memanfaatkan semikonduktor secara reaksi reduksi dan oksidasi limbah pewarna tekstil. Pada penelitian ini dilakukan sintesis bismuth titanate (BTO) sebagai semikonduktor dan didukung oleh nanopartikel logam mulia Ag, Au, dan nanoalloy AuAg untuk memaksimalkan aktivitas fotodegradasi senyawa metilen biru. Sintesis bismuth titanate dilakukan dengan metode hidrotermal selama 24 jam pada 200 berhasil dilakukan begitupun pada sintesis nanopartikel Ag dan Au serta nanoalloy AuAg menggunakan metode reduksi kimia dengan surfaktan CTAB. Karakterisasi yang dilakukan pada penelitian ini menggunakan instrumen XRD (BTO), XRF (BTO), BET (BTO), UV-DRS (BTO dan nanokomposit), dan UV-Vis spektrofotometer (Nanopartikel). Aktivitas fotodegradasi dilakukan pada lampu cahaya tampak 400W dan dianalisis menggunakan UV-Vis. Berdasarkan hasil XRD, BTO memiliki fasa kristal orthorhombik. Pada karakterisasi BET menunjukkan BTO memiliki luas permukaan sebesar 22,585 m2/gr. Untuk hasil UV-Vis nanopartikel menunjukkan puncak absorbansi maksimum pada 410 nm (Ag), 465 nm (AuAg), dan 520 nm (Au). Dari hasil karakterisasi UV-DRS, diketahui bahwa nilai celah pita dari bismuth titanate sebesar 2,65 eV dan 2,54 eV untuk BTO-Au, 2,65 eV untuk BTO-AuAg, dan 2,70 eV untuk BTO-Ag. Dari hasil aktivitas fotodegradasi metilen biru terhadap BTO, 29.5 % untuk BTO, 55,7% untuk BTO-Au, 75,5% untuk BTO-Ag, dan 48,4% untuk BTO-AuAg. Hal tersebut menandakan bahwa terdapat pengaruh penambahan nanopartikel pada semikonduktor yang dapat mempengaruhi tingkat aktivitas fotokatalitik.

Textile dye waste is one of the biggest contributors to water pollution in the world. Textile dye waste is quite stable and difficult to degrade in aquatic ecosystems. One technique that can overcome textile dye waste is the Advanced Oxidation Process (AOPs) technique, which utilizes semiconductors by reduction and oxidation reactions of textile dye waste. In this study, Bismuth Titanate (BTO) have a role as semiconductor material and supported by metal nanoparticle Ag, Au, and Au-Ag nanoalloy to maximize photodegradation activity of blue methylene compound. Bismuth Titanate Synthesis was performed with hydrothermal method for 24 hours in 200 and nanoparticle synthesis of Ag, Au, and Au-Ag nanoalloy were performed by chemical reduction method with CTAB surfactant as stabilizer. Characterization was performed with XRD (BTO), XRF (BTO), BET (BTO), UV-DRS (BTO and nanocomposite), and UV-Vis (nanoparticle) spectrophotometer instrument. Photodegradation activity was performed in 400 W visible lamp irradiation and measured by UV-Vis Spectrophotometer. Based on XRD characterization, crystal phase of BTO is orthorhombic phase. Characterization with BET instrument showed that surface area of BTO is 22,585 m2/gr. Characterization with UV-Vis showed that maximum peak of nanoparticle was occurred at 410 nm (Ag), 465 nm (AuAg), and 520 nm (Au). Based on UV-DRS characterization, band gap value is 2,65 eV (BTO), 2,54 eV (BTO-Au), 2,65 eV (BTO-AuAg), and 2,70 eV (BTO-Ag). Photodegradation activity of BTO, BTO-Au, BTO-Ag, and BTO-AuAg is 29.5%; 55.7%; 75.5%, and 48.4%. Based on photodegradation activity analysis, nanoparticle has effect against photocatalysis reaction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andien Salsabila Ramdhaniati
"Bahan bakar hidrogen merupakan salah satu sumber energi baru dan terbarukan yang menarik perhatian karena memiliki kepadatan energi yang tinggi. Reaksi evolusi hidrogen merupakan teknik paling sederhana yang dapat digunakan untuk menghasilkan hidrogen sebagai salah satu sumber energi alternatif. Pengembangan material terus dilakukan agar dapat memperoleh kinerja reaksi evolusi hidrogen yang efektif dan efisien. Pada penelitian ini, dilakukan dekorasi multi-walled carbon nanotubes (MWCNT) dengan nanopartikel AuAg menggunakan metode direct borohydride reduction, yang akan digunakan sebagai elektrokatalis pada reaksi evolusi hidrogen, Keberhasilan dan kemurnian dari dekorasi nanopartikel AuAg terhadap MWCNT telah dianalisis melalui karakterisasi XRD, Spektroskopi UV-Vis, dan Spektroskopi Raman. Komposit AuAg/MWCNT, Au/MWCNT, Ag/MWCNT dan f-MWCNT yang telah dipreparasi akan ditambatkan pada elektroda glassy carbon melalui metode drop casting. Nilai overpotensial yang didapatkan dari elektroda GCE/AuAg/MWCNT, GCE/Au/MWCNT, GCE/Ag/MWCNT, GCE/MWCNT, dan bare GCE berturut-turut adalah -0,47 V; -0,63V; -0,50 V; -0,64 V dan -0,96 V yang membuktikan bahwa dekorasi MWCNT dengan nanopartikel AuAg berhasil meningkatkan kinerja sebagai elektrokatalis pada reaksi evolusi hidrogen dengan menurunkan nilai overpotensial. Selain itu, dari pengujian ECSA diketahui bahwa luas permukaan aktif dari elektroda GCE/AuAg/MWCNT adalah 0,1665 cm-2, jauh lebih besar jika dibandingkan dengan GCE/Au/MWCNT (0,0353 cm- 2), GCE/Ag/MWCNT (0,020 cm-2), GCE/MWCNT (0,0067 cm-2) dan bare GCE (0,0033 cm-2). Sifat konduktivitas dan kestabilan elektroda GCE/AuAg/MWCNT juga berhasil dibuktikan dari analisis EIS dan uji stabilitas elektroda melalui metode kronoamperometri. Selain itu, seluruh komposit dilakukan karakterisasi dengan menggunakan Fourier Transform Infra-Red (FTIR), Spektroskopi Raman, X-ray diffraction (XRD), Spektroskopi UV-Vis, dan transmission electron microscopy (TEM).

Hydrogen fuel currently gaining popularity as a renewable source due to its higher energy density. Hydrogen evolution reaction is the simplest and most effective method to produce hydrogen as a source of alternative energy with zero emission of CO2. Material development continues to be carried out to obtain an effective and efficient hydrogen evolution reaction performance. In this research, a direct borohydride reduction process was utilized to decorate multi-walled carbon nanotubes (MWCNT) with AuAg nanoparticles, which would be used as an electrocatalyst in the hydrogen evolution reaction. The prepared AuAg/MWCNT, Au/MWCNT, Ag/MWCNT, and f-MWCNT composites will be anchored to the glassy carbon electrode by a drop-casting method. The overpotential values obtained from the GCE/AuAg/MWCNT, GCE/Au/MWCNT, GCE/Ag/MWCNT, GCE/MWCNT, and bare GCE electrodes were -0.47 V; -0.63V; - 0.50 V; -0.64 V and -0.96 V which proved that the decoration of MWCNT with AuAg nanoparticles succeeded in increasing the performance as an electrocatalyst in the hydrogen evolution reaction by reducing the overpotential value. In addition, from the ECSA test it is known that the active surface area of the GCE/AuAg/MWCNT electrode is 0.1665 cm-2, much larger than that with GCE/Au/MWCNT (0.0353 cm-2), GCE/Ag/MWCNT (0.020 cm-2), GCE/MWCNT (0.0067 cm-2) and bare GCE (0.0033 cm- 2). The conductivity and stability of the GCE/AuAg/MWCNT electrodes were also proven from the EIS analysis and the electrode resistance test using the chronoamperometric method. All the composites were also characterized using Fourier Transform Infra-Red (FTIR), Raman Spectrophotometer, X-Ray Diffraction (XRD), UV-VIS Spectrophotometry, and Transmission Electron Microscopy (TEM)."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library