Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 19 dokumen yang sesuai dengan query
cover
Emirza Rachmansyah
Abstrak :

Indonesia sebagai salah satu negara berkembang di dunia memiliki permasalahan terkait sampah yaitu timbulan sampah yang terus meningkat dan kepedulian masyarakat yang masih rendah terkait pengelolaan sampah. Penerapan Waste to Energy dapat mengatasi permasalahan dari sampah dikarenakan dapat mengurangi timbulan sampah yang dibuang ke TPA. Tujuan dari penelitian ini yaitu untuk menganalisis sampah ITC Cempaka Mas dengan metode Selective Dissolution Method untuk mengetahui apakah penggunaan bahan bakar alternatif yang terbuat dari sampah dapat mengurangi emisi CO2 pada proses produksinya. ITC Cempaka Mas sebagai salah satu mall terbesar di Jakarta menghasilkan sampah sebanyak 27 ton perharinya yang terdiri dari 51.71% sampah organik dan 48.29% sampah inorganik. Penelitian ini bertujuan untuk mengetahui variasi komposisi dari sampel bahan bakar alternatif yang terbuat dari sampah ITC Cempaka Mas mana yang paling efektif dalam mengurangi emisi CO2 jika digunakan dalam proses produksi pembuatan semen. Variabel bebas yang digunakan adalah melakukan variasi komposisi sampel bahan bakar alternatif. Sampel 1 memliki komposisi sama dengan komposisi sampah ITC Cempaka Mas; sampel 2 terdiri dari 80% kertas dan 20% plastik; sampel 3 20% kertas dan 80% plastik; sampel 4 terdiri dari 20% kertas, 60% plastik, dan 20% organik; dan sampel 5 terdiri dari 60% kertas, 20% plastik, dan 20% organik. Hasil yang didapat pada penelitian ini adalah bahwa sampel 4 memiliki faktor emisi paling besar jika digunakan sebagai bahan bakar alternatif yaitu 3705.9 Kg CO2/Ton RDF dan sampel 5 memiliki faktor emisi paling rendah yaitu 1523.59 Kg CO2/Ton RDF. Sampel 1 merupakan sampel yang paling efektif digunakan sebagai bahan bakar alternatif dikarenakan memiliki rasio emisi CO2 yang paling kecil diantara sampel lainnya sehingga dapat mengurangi emisi CO2 sebesar 1267 x 107 jika dibandingkan dengan B-C Oil, 6715.1 x 107 jika dibandingkan dengan Bituminous Coal dan 3305.6 x 109 jika dibandingkan dengan Anthracite Coal.

 


Indonesia as one of the developing countries in the world has a problem related to waste, namely increasing waste generation and low public awareness regarding waste management. The application of Waste to Energy can overcome the problem of waste that can be reduced by the generation of waste disposed to the landfill. The purpose of this study was to analyze the waste of ITC Cempaka Mas with the Selective Dissolution Method method to find out whether using alternative fuels made from garbage can be used to transfer emissions in the production process. ITC Cempaka Mas as one of the biggest malls in Jakarta produces 27 tons of garbage per day which consists of 51.71% organic waste and 48.29% inorganic waste. This study aims to determine the variation in composition of alternative fuel samples made from ITC Cempaka Mas waste which is the most effective in reducing CO2 emissions if used in the production process of making cement. The independent variable used is to vary the composition of alternative fuel samples. The sample 1 has the same composition as the composition of ITC Cempaka Mas waste; sample 2 consists of 80% paper and 20% plastic; sample 3 20% paper and 80% plastic; sample 4 consists of 20% paper, 60% plastic, and 20% organic; and sample 5 consisted of 60% paper, 20% plastic, and 20% organic. The results obtained in this study are that sample 4 has the largest emission factor if it is used as an alternative fuel, namely 3705.9 Kg CO2 / Ton RDF and sample 5 has the lowest emission factor which is 1523.59 Kg CO2 / Ton RDF. Sample 1 is the most effective sample used as an alternative fuel because it has the smallest CO2 emission ratio among other samples so that it can reduce CO2 emissions by 1267 x 107 when compared to BC Oil, 6715.1 x 107 when compared to Bituminous Coal and 3305.6 x 109 when compared to Anthracite Coal.

 

2019
T53181
UI - Tesis Membership  Universitas Indonesia Library
cover
Azami Indarabbi Zulfan
Abstrak :
Saat ini, penggunaan bahan bakar fosil sudah menjadi kebutuhan bagi segala jenis motor dan sudah menjadi ketergantungan bagi motor tersebut. Terdapat beberapa bahan bakar alternative pengganti bahan bakar minyak, salah satunya ialah bioetanol. Pada kebanyakan kasus, bioetanol biasanya dipakai sebagai bahan bakar campuran bensin. Pemakaiannya memerlukan perbandingan tertentu. Bioetanol yang biasa dipakai adalah bioetanol anhidrat dengan kadar air 0,1%. Pada penelitian sebelumnya, telah dilakukan pemanfaatan gas buang sebagai alat destilasi bioetanol hidrat menjadi bioetanol anhidrat. Namun, hasil yang didapatkan hanya mampu mencapai kadar 96%. Akhirnya, penelitian berlanjut dengan melakukan perancangan mekanisme masukan bahan bakar campuran ke ruang bakar. Mekanisme fuel mixer tercipta. Dengan menggunakan mekanisme tersebut, penelitian berlanjut hingga menganalisa performa motor stastis menggunakan dynometer test. Di sini, penulis melakukan penelitian mencari kestabilan konsumsi bahan bakar campuran bioetanol hidrat-bensin untuk menganalisa hasil konsumsi bahan bakar. Variasi campuran bahan bakar yang digunakan ialah E5, E10, dan E15 yang nantinya nilai konsumsi bahan bakar tersebut dibandingkan dengan konsumsi bahan bakar bensin murni. Nilai konsumsi bahan bakar setiap variasi setiap percobaan dibandingkan dan didapatkan nilai konsumsi bahan bakar campuran stabil. Dari hasil penelitian, nilai konsumsi bahan bakar campuran lebih besar/boros jika dibandingkan dengan konsumsi bahan bakar bensin murni. Semakin banyak kandungan bioetanol hidrat, maka akan membuat ketidakstabilan konsumsi bahan bakar bensin tetapi membuat stabil konsumsi bahan bakar bioetanol hidrat. ...... Now, the use of fossil fuels has been a need of for all kinds of vehicle and has become dependence for vehicle. There are several alternative fuel as a substitute for fuel oil, one of them is bioethanol. In most cases, bioethanol usually used as fuel mixture of gasoline. Bioethanol is used as a fuel, usually mixed with gasoline at a certain ratio. Bioethanol is used anhydrous ethanol with 0.1% water content. Previous studies has done the utilization of the exhaust gases as hydrous bioethanol distillation instrument become anhydrous bioethanol. However, the results achieved are only able to reach content of 95% or hydrous bioethanol. Research continues about a mechanism design of mixing hydrous bioethanol with gasoline. Fuel mixer mechanism is created. By using this mechanism, writer conducting research looking for the stability of fuel consumption a mixture of hydrous bioethanol-gasoline to analyze the results of fuel consumption stability. Mixture variation of fuel that is used are E5, E10, and E15 which will value the consumption of the fuel compared to pure gasoline. Any variation and any attempt is compared, then the fuel consumption of each variation in every attempt can be said to be stable. The results show that the value of fuel consumption by mixture fuel is larger/wasteful compared with fuel consumption by pure gasoline except in E15h fuel mixture. The more bioetanol hydrate content, it will make instability consumption of fuel but make stable fuel consumption of bioetanol hydrate.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62657
UI - Skripsi Membership  Universitas Indonesia Library
cover
Moetia Desshinta Maharani
Abstrak :
ABSTRAK
Proses produksi semen di Indocement Tunggal Prakarsa menggunakan bahan bakar alternatif yang terdiri dari biomass, RDF, dan limbah B3. Logam berat yang hilang dalam proses pembakaran tersebut yaitu Pb, Cd, Co, Cr, Cu dan Ni secara berturut-turut adalah sebesar78,65 , 50 , 63 , 50 , 43,93 , dan 27 .. Sedangkan, terdapat perbedaaan konsentrasi logam berat yang hilang dalam padatan dengan konsentrasi logam berat dalam gas buang. Konsentrasi logam berat yang hilang selama proses produksi untuk Pb, Cd, Co, Cr, Cu, dan Ni secara berturut-turut adalah 1,056 x 106 mg/m3, 9 x 103 mg/m3, 2,48 x 105 mg/m3, 3,3 x 104 mg/m3, 5,23 x 106 mg/m3 , dan 2,66 x 106 mg/m3. Sedangkan, untuk konsentrasi logam berat Pb, Cd, Co, Cr, Cu dan Ni dalam gas buang adalah sebesar 0,0008 mg/m3, 0,0002 mg/m3, 0,001 mg/m3, 0,0095mg/m3, 0,0148 mg/m3, 0,0212 mg/m3.
ABSTRACT
In process of cement manufacturing at Indocement Tunggal Prakarsa uses alternative fuels consisting of biomass, RDF, and hazardous waste. The heavy metals lost in such process are Pb, Cd, Co, Cr, Cu, and Ni respectively of78,65 , 50 , 63 , 50 , 43,93 , and 27 . There is a difference in the concentration of heavy metals lost in solids with heavy metal concentrations in the flue gas. The concentrations of heavy metals lost during the production process for Pb, Cd, Co, Cr, Cu, and Ni were 1,056 x 106 mg m3, 9 x 103 mg m3, 2.48 x 105 mg m3, 3,3 x 104 mg m3, 5.23 x 106 mg m3, and 2.66 x 106 mg m3. As for the concentrations of heavy metals Pb, Cd, Co, Cr, Cu and Ni in the flue gas are 0.0008 mg m3, 0.0002 mg m3, 0.001 mg m3, 0.0095mg m3, 0.0148 Mg M3, 0.0212 mg m3.
2017
S69298
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amien Rahardjo
Fakultas Teknik Universitas Indonesia, [date of publication not identified]
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
R. Belanto Hadiwido
Abstrak :
Minyak bumi merupakan sumberdaya alam tak terbarui yang membutuhkan pengelolaan secara berkelanjutan. Pemanfaatan minyak bumi di Indonesia sampai dengan saat ini sebagian besar untuk kebutuhan yang nilai dan umur pemanfaatannya rendah yaitu dipergunakan sebagai Bahan Bakar Minyak bumi (BBM) sebagai salah satu produk dari minyak bumi. Seharusnya minyak bumi diproduksi menjadi produk yang memiliki nilai ekonomis dan umur pemakaian yang Iebih lama dari pada hanya dipergunakan sebagai bahan bakar yang memiiiki umur manfaat yang sebentar dan nilai ekonomis yang rendah. Hal ini sesuai dengan tujuan pengelolaan minyak bumi secara berkelanjutan Konservasi minyak bumi dengan mekanisme harga tidak akan berhasil memutus ketergantungan masyarakai pengkonsumsi BBM tanpa adanya perubahan persepsi atau penyadaran dan penyediaan Bahan Bakar Alternatif (BBA). BBA yang paiing layak dipergunakan untuk memutus ketergantungan tersebut adalah Gas bumi yang keberadaannya masih lebih banyak dibandingkan minyak bumi dan bahan bakar gas secara umum tidak terlalu berbeda dari minyak bumi. Setelah masyarakat beralih pada Bahan Bakar Gas (BBG) maka iangkah selanjutnya adaiah menyiapkan bahan bakar altematif berasal dan minyak nabati yang merupakan sumberdaya alam terbarui Strategi pengalihan dari BBM menuju ke BBG atau Bahan Bakar Elpiji (BBE) merupakan gabungan dua kegiatan yaitu Kampanye. Iklan penyadaran masyarakat akan Nilai Strategis minyak bumi dan Program Penyediaan Peralatan Konversi BBG produksi dalam negeri yang akan melibatkan industri kecil yang diharapkan dapat menciptakan Iapangan pekerjaan baru disetiap pelosok daerah di Indonesia. Penempatan harga BBM keharga yang layak akan meningkatkan nilai saing dalam APBN Indonesia dengan negara Iain termasuk negara-negara tetangga kita.
Jakarta: Program Pascasarjana Universitas Indonesia, 2000
T16803
UI - Tesis Membership  Universitas Indonesia Library
cover
Sugiarti
Abstrak :
Salah satu minyak nabati yang potensial untuk dimanfaatkan sebagai bahan bakar alternatif adalah minyak jarak pagar (Jatropha curcas), karena memiliki komponen yang mirip dengan minyak bumi. Minyak jarak tidak dapat dikonsumsi karena beracun, sehingga tidak terjadi kompetisi antara penggunaannya sebagai bahan bakar atau bahan pangan. Namun, minyak jarak memiliki viskositas sepuluh kali lebih tinggi daripada solar, sehingga dibutuhkan metode yang tepat untuk menurunkan viskositasnya. Penelitian sebelumnya menggunakan metode perengkahan thermal pada tekanan 18 bar dengan sistem batch, menunjukkan bahwa hidrokarbon rantai panjang minyak jarak dapat direngkah menjadi hidrokarbon dengan rantai yang lebih pendek sehingga menghasilkan bio-oil dengan viskositas yang lebih rendah. Namun, viskositas bio-oil tersebut belum setara dengan solar komersial. Di samping itu, tekanan operasi yang tinggi sulit untuk diaplikasikan pada kendaraan bermotor. Agar sesuai dengan sistem yang ada pada kendaraan, maka pada penelitian ini akan dilakukan pirolisis minyak jarak fasa cair secara batch dengan sirkulasi. Pemilihan proses ini dilakukan juga untuk memperoleh kondisi optimum yang diperlukan agar minyak jarak dapat dipirolisis menjadi setara solar. Pirolisis minyak jarak dilakukan dengan menggunakan reaktor dari bahan stainless steel dengan ukuran diameter = 2,44 cm dan tinggi = 20 cm. Suhu reaksi 320, 340 dan 360 0C dan waktu reaksi 3,47; 4,79; 8,56 dan 13,89 menit. Produk yang diperoleh kemudian dianalisis densitas, viskositas, angka setana, FTIR dan GC ? MS. Hasil analisis menunjukkan viskositas minyak jarak mengalami penurunan dari 63,3052 cSt290C menjadi 56,4448 s/d 60,9578 cSt290C pada suhu 3200C . Hal ini menandakan bahwa hidrokarbon rantai panjang yang terdapat pada minyak jarak mengalami perengkahan. Selain itu viskositasnya juga mengalami peningkatan pada suhu 340 dan 3600C, yang menandakan telah terjadi reaksi propagasi. Hasil analisis densitas juga menunjukkan tren yang sama. Pada hasil analisis angka setana menunjukkan minyak jarak mengalami peningkatan dari 37 menjadi 41. Pirolisis pada penelitian ini merupakan reaksi orde 2 dengan konstanta laju reaksi 1,74 x 10-5 s/d 0,0053 min-1 dan energi aktivasi 4,40 x 105 s/d 4,49 x 105 J/grmol. Konversi tertinggi yang dihasilkan adalah sebesar 15,28%. Perhitungan simulasi untuk konversi pirolisis 100% diperoleh pada suhu 320, 340 dan 3600C dengan waktu reaksi berturut?turut 38.48, 35.6 dan 30.65 menit. Viskositas bio-oil yang dihasilkan pada kondisi optimum ini berturut ? turut adalah sebesar 34,17;37,16 dan 38,14 cSt(270C). Agar viskositas bio-oil yang dihasilkan pada kondisi optimum ini dapat setara dengan solar, maka sebelum masuk ke ruang pembakaran, bio-oil harus mengalami pemanasan awal pada suhu 230 s/d 2500C. Setelah mengalami pemanasan awal, diperoleh bio-oil dengan viskositas berturut ? turut 4,7; 5,67 dan 4,29 cSt(290C).
One of potential bio oil used for alternative fuel in Indonesia is Jatropha oil (Jatropha curcas), because it has similar components with crude oil. Jatropha oil cannot be consumed because poisonous, therefore no usage competition whether it be used as fuel or food. However, viscosity of jatropha oil is ten times higher than diesel fuel, thence a specific method is required to decrease its viscosity. Previous research was using gas phase - thermal cracking method at high pressure (18 bar) batch system, showed that long chain hydrocarbon of jatropha oil can be cracked into shorter chain hydrocarbon which produced lower viscosity of biooil. The viscosity of bio-oil produced has equal grade with commercial diesel fuel if heated up to 1000C, but application of high pressure system (18 bar) on vehicle is difficult. In order to achieve the suitable fuel for vehicle application, this research will conduct pyrolysis of liquid phase jatropha oil in batch system with circulation. This process is selected to provide required optimum condition for pyrolysis process in reactor. Pyrolysis process is performed in stainless steel reactor with 2,44 cm diameter and 20 cm height. Reaction is carried out at temperature 320, 340 and 360 0C within 3.47, 4.79, 8.56 and 13.89 minutes of reaction time. Reaction product will then be analyzed with density, viscosity, cetane number, FTIR and GC ? MS. Viscosity product is have decrease from 63.3052 cSt290C to 56.4448 s/d 60.9578 cSt290C in 3200C. Its mean the hydrocarbon longchain is cracking. Expect to the viscosity is increase in 340 and 3600C, its mean is the radical reaction is begin. Density is the same tren. Cetane number is increase from 37 to 41. The maximum convertion is 15.28% is the required in 3200C and 3.47 minutes. To obtained the convertion 100%, pyrolysis in 320, 340 and 3600C with time pyrolysis is 38,48; 35,6 and 30,65 minutes. The obtained viscosity in optimum condition is 34,17; 37,16 and 38,14 cSt(290C). to get the viscosity is diesel like fuel, bio-oil is heated until 2500C. after heating, bio-oil viscosity is 4,7; 5,67 and 4,29 cSt(290C).
Depok: Fakultas Teknik Universitas Indonesia, 2010
T30805
UI - Tesis Open  Universitas Indonesia Library
cover
Rifat Firoos Aiman
Abstrak :
Penggunaan mobil listrik yang meningkat memerlukan dukungan ekologi yang memadai dan infrastruktur yang kuat. Jarak tempuh mobil listrik yang pendek dan kurangnya fasilitas pengisian menjadi dua hambatan utama. Penelitian ini menggunakan MINLP untuk mempelajari lokasi optimal stasiun pengisian kendaraan listrik di DKI Jakarta. Tujuannya adalah untuk mengurangi total biaya pembangunan stasiun pengisian, biaya transportasi untuk mobil yang pergi ke stasiun tersebut, dan waktu tunggu pengisian bagi pengemudi. Dengan menciptakan jaringan stasiun pengisian yang efektif, meningkatkan kemudahan penggunaan mobil listrik, dan mendorong penggunaan bahan bakar alternatif, studi ini diharapkan dapat mendukung program hijau pemerintah dan menciptakan lingkungan perkotaan yang lebih berkelanjutan. Untuk lebih mengurangi dampak terhadap lingkungan, proyek ini juga fokus pada integrasi sumber energi terbarukan ke dalam infrastruktur pengisian. ......The increased use of electric vehicles calls for sufficient ecological support and a strong infrastructure. The short range of electric cars and the dearth of charging facilities present two major obstacles. The optimal location of EV charging stations in DKI Jakarta is being studied using MINLP. The goal is to reduce the overall cost of constructing charging stations, the cost of transportation for cars to go to these stations, and the amount of time drivers must wait to be charged. By creating an effective network of charging stations, improving the usability of electric cars, and encouraging the use of alternative fuels, the study hopes to help green government programs and create a more sustainable urban environment. To further lessen the influence on the environment, this project also focuses on incorporating renewable energy sources into the infrastructure for charging.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Hamidi
Abstrak :
Penghematan energi dan upaya mencari bahan bakar alternatif yang terbarukan seperti bioetanol perlu dilakukan saat ini. Produksi bioetanol dapat ditingkatkan diantaranya dengan mengoptimasi temperatur fermentasi dan waktu retensiya. Waktu retensi dipengaruhi oleh laju reaksi pembentukan, yang dalam penelitian ini akan diteliti lebih lanjut mengenai konstanta laju reaksi pembentukan bioetanol. Pada penelitian ini akan diproduksi bioetanol berbasis tandan kosong sawit TKS. TKS terlebih dahulu didelignifikasi untuk menghilangkan kandungan ligninnya, kemudian TKS tersebut dikonversi menjadi bioetanol dengan menggunakan metode Simultaneous Saccharification and Fermentation SSF. Pada proses ini, suhu reaksi divariasikan yaitu 30, 33, dan 35 agar diperoleh suhu terbaik, dengan pengambilan sampel setiap 24 jam selama 4 hari. Kondisi terbaik pada penelitian dicapai pada suhu 30 dengan waktu sakarifikasi dan fermentasi selama 24 jam. Koefisien kinetika yang diperolah pada kondisi terbaik tersebut yaitu maximum spesific growth reaction rate ?max = 0,008 h-1; monod constant Ks = 0,005 g/dm3; specific natural death constant Kd = 0,011 h-1; dan cell maintenance constant m = 0,457 h-1.
It is necessary for energy savings as well as searching for alternative renewable fuels, such as bioethanol. Bioethanol production could be improved such as by optimizing the fermentation temperature and retention time. The retention time is influenced by the rate of reaction formation, which in this study will be further examined on the reaction rate constant formation of bioethanol. In this research, bioethanol will be produced from oil palm empty fruit bunches EFB. Empty fruit bunches of oil palm EFB will undergo delignification process to remove its lignin content, then cellulosic rich oil palm empty fruit bunches EFB will then be converted into bioethanol using Simultaneous Saccharification and Fermentation SSF method. In this process, the reaction temperature variation 30, 33, and 35 performed to determine the optimum temperature, with sampling every 24 hours for 4 days. The optimum conditions in the study achieved at a temperature of 30 C in 24 hour of sacarification and fermentation. Meanwhile, the kinetic coefficients achieved in this optimum condition are maximum spesific growth reaction rate max 0,008 h 1 monod constant Ks 0,005 g dm3 specific natural death constant Kd 0,011 h 1 and cell maintenance constant m 0,457 h 1.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67664
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Hasfi Rizki Nur
Abstrak :
Sektor industri dan transportasi sudah menjadi aspek utama dalam kehidupan manusia sehari-hari dengan sumber energi yang masih didominasi oleh energi fosil sehingga merusak lingkungan. Bahan bakar nabati (BBN) merupakan opsi yang kerap digunakan untuk mengatasi permasalahan energi tersebut. Biodiesel, salah satu dari jenis BBN, hewani dapat digunakan sebagai bahan bakar alternatif bahkan sebagai aditif untuk minyak solar. Selain itu, penggunaan Biodiesel dengan bahan baku minyak kelapa sawit cocok dengan sumber daya alam Indonesia. Pemerintah Indonesia terus mendukung pengembangan produk biodiesel dan penggunaannya sebagai bahan bakar alternatif, namun terdapat beberapa permasalahan dikarenakan karakteristik dasar biodiesel memiliki perbedaan dibandingkan dengan minyak solar. Biodiesel memiliki karakteristik yang sensitif terhadap suhu rendah yang akan terjadinya pengkristalan partikulat dan kontaminan sehingga akan menyebabkan fenomena penyumbatan filter. Selain itu, sifat fisik dasar biodiesel yang lebih kental dan padat dibanding minyak solar kerap berefek pada kurang maksimalnya pengabutan injektor di sistem injeksi mesin diesel. Tujuan penelitian ini adalah untuk mengetahui pengaruh tingkat pencampuran biodiesel dengan minyak solar (B0 – B100) terhadap karakteristik fisika dan kimianya. Campuran bahan bakar pada penelitian ini adalah minyak solar dengan angka setana 48 dan biodiesel fatty acid methyl ester (FAME). Pengujian karakteristik yang dilakukan meliputi nilai densitas, viskositas kinematik, cleanliness, total kontaminan, filter blocking tendency (FBT), dan cold filter plugging point (CFPP). Selain itu juga dilakukan pengujian tekanan pengabutan injektor untuk membandingkan nilai pengujian karakteristik secara eksperimental di kondisi aktual. Hasil pengujian karakteristik menunjukan terjadi peningkatan seiring dengan penambahan tingkat pencampuran biodiesel sebesar 1,78%, viskositas kinematik sebesar 29,87%, total kontaminan sebesar 2 kali lipat, CFPP sebesar 6oC dan FBT sebesar 3,74 kali lipat. Selain itu, hasil uji tekanan pengabutan juga mengalami peningkatan nilai tekanan seiring meningkatnya pencampuran kadar biodiesel sebesar 5,45%. ......The industrial and transportation sectors have become the main aspects of everyday human life, with fossil fuels still dominating energy sources, thus damaging the environment. Biofuel is an option that is often used to overcome these energy problems. Biodiesel, one of the biofuels, can be used as an alternative fuel. In addition, using Biodiesel with palm oil as raw material is compatible with Indonesia's natural resources. The Indonesian government continues to support the development of biodiesel products and their use as alternative fuels. However, there are some problems due to the different essential characteristics of Biodiesel compared to diesel oil. Biodiesel has characteristics that are sensitive to low temperatures, which will cause particulate and contaminant crystallization to occur, causing filter clogging. In addition, the basic physical properties of Biodiesel, which are thicker and denser than diesel oil, often affect the injector spray quality. The purpose of this study was to determine the effect of mixing level of Biodiesel with petro-diesel (B0 – B100) on its physical and chemical characteristics. The fuel mixture in this study was diesel oil with a cetane number of 48 (CN 48) and Fatty Acid Methyl Ester (FAME) biodiesel. The results of the characteristic test showed an increase along with the addition of the biodiesel blending level, the density value was 1.78%, the kinematic viscosity was 29.87%, the total contaminants were 2 times, the CFPP was 6oC and the FBT was 3.74 times. In addition, the results of the atomization pressure test also experienced an increase in the pressure value as the biodiesel blending content increased by 5.45%.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
<<   1 2   >>