Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Ajun Tri Setyoko
"Saat ini penggunaan kendaraan listrik di dunia khususnya mobil listrik berkembang dengan cepat. Hal ini akan menimbulkan tantangan pengelolaan limbah baterai. Penelitian ini bertujuan untuk merumuskan strategi pengelolaan limbah baterai mobil listrik Indonesia yang berkelanjutan di masa depan dengan mempertimbangkan penciptaan nilai tambah dari limbah tersebut. Penelitian ini mengidentifikasi regulasi terkait pengelolaan limbah baterai di Indonesia dan studi literatur skema aliran limbah baterai mobil listrik di negara lain seperti Eropa, Amerika, Cina, dan Korea Selatan. Penelitian ini juga mengidentifikasi faktor lingkungan internal dan eksternal dari industri pengelolaan limbah baterai menggunakan analisis PESTEL dan SWOT. Hasil analisis SWOT tersebut kemudian dibobotkan menggunakan analisis IFE dan EFE, kemudian dirumuskan strategi alternatif menggunakan matriks SWOT. Riset ini mengidentifikasi 7 faktor kekuatan, 6 faktor kelemahan, 8 faktor peluang dan 8 faktor ancaman. Hasil analisis faktor eksternal dan internal dengan analisis IFE dan EFE menunjukkan bahwa industri pengelolaan limbah baterai di Indonesia memiliki kondisi internal yang kuat dan berpotensi untuk berkembang serta mampu menghadapi permasalahan limbah baterai mobil listrik di masa mendatang. Penelitian ini menghasilkan 7 strategi yang ditujukan kepada Direktorat Jenderal Pengelolaan Limbah Bahan Berbahaya dan Beracun, Kementerian Lingkungan Hidup dan Kehutanan. Strategi yang substansial adalah pemerintah perlu membangun fasilitas daur ulang terpadu dan skema pengelolaan limbah baterai mobil listrik dengan skema implementasi Extended Producer Responsibility (EPR).

Currently the use of electric vehicles in the world, especially electric cars is growing rapidly. This will pose challenges in battery waste management. This study aims to formulate a strategy for managing Indonesian electric car battery waste that is sustainable in the future by considering the creation of added value from the waste. This research identifies regulations related to battery waste management in Indonesia and studies literature on electric car battery waste flow schemes in other countries such as the European Union, America, China, and South Korea. This research also identifies the internal and external environmental factors of the battery waste management industry using PESTEL and SWOT analysis. The results of the SWOT analysis are then weighted using the IFE and EFE analysis, then alternative strategies are formulated using a SWOT matrix. We identified 7 strength factors, 6 weakness factors, 8 opportunity factors and 8 threat factors. The results of the analysis of external and internal factors with IFE and EFE analysis show that the battery waste management industry in Indonesia has strong internal conditions and the potential to develop and is able to face the issue of electric car battery waste in the future. This research resulted in 7 strategies addressed to the Directorate General of Hazardous and Toxic Materials Waste Management, The Ministry of Environment and Forestry. A substantial strategy is that the government needs to build an integrated recycling facilities and electric car battery waste management schemes with an Extended Producer Responsibility (EPR) implementation scheme"
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Anggi Nabila
"Saat ini, belum adanya data yang secara spesfik dan fakta menggambarkan berapa timbulan limbah baterai yang dihasilkan di Jakarta khusususnya Kota Jakarta Timur. Keterbatasan data seringkali menyulitkan pihak pendaur ulang untuk menentukan kapisitas dari fasilitas daur ulang limbah baterai. Dengan demikian, dibutuhkannya penelitian untuk mengukur timbulan dan komposisi jenis limbah baterai sehingga dapat dilakukannya perencanaan fasilitas daur ulang limbah baterai Skala Wilayah di Jakarta Timur. Timbulan dan komposisi jenis limbah baterai dapat diperoleh dengan sampling di 60 rumah tangga selama 30 hari. Sedangkan kapasitas daur ulang limbah baterai dapat diperoleh melalui perhitungan proyeksi penduduk dan proyeksi timbulan limbah baterai yang ada di Jakarta Timur selama 10 Tahun mendatang (2024-2034). Berdasarkan hasil sampling 60 KK, diperoleh timbulan limbah baterai sebesar 3398,88 gram dengan jumlah baterai sebanyak 193 unit. Jenis baterai yang terkumpul antara lain: baterai ukuran AA sebanyak 135 unit, AAA sebanyak 48 unit, C sebanyak 2 unit, D sebanyak 2 unit, baterai kancing/baterai jam sebanyak 3, baterai li-ion sebanyak 1 unit, baterai Hp sebanyak 1 unit, dan powerbank sebanyak 1 unit. Timbulan limbah baterai AA di Jakarta Timur diperoleh sebesar 68 ton/tahun, sehingga kapasitas pengolahan limbah baterai yang direkomendasikan adalah 85 ton/tahun dengan pendapatan kotor untuk pemulihan Zn sebesar Rp440.123.254 per Tahun dan untuk pemulihan Mn sebesar Rp855.740 per tahun. Berdasarkan hasil tersebut, dapat diketahui bahwa daur ulang baterai primer/sekali pakai memiliki potensi ekonomi yang dapat menguntungkan perekonomian dan lingkungan.

Currently, there is no specific and factual data depicting the amount of battery waste generated in Jakarta, particularly in East Jakarta. This data limitation often makes it difficult for recyclers to determine the capacity of battery waste recycling facilities. Therefore, research is needed to measure the quantity and composition of battery waste to enable the planning of regional-scale battery waste recycling facilities in East Jakarta. The quantity and composition of battery waste can be obtained by sampling 60 households over 30 days. The recycling capacity of battery waste can be determined through population projection and battery waste projection in East Jakarta over the next 10 years (2024-2034). Based on the sampling of 60 households, a total of 3,398.88 grams of battery waste was obtained, comprising 193 battery units. The collected batteries included 135 AA batteries, 48 AAA batteries, 2 C batteries, 2 D batteries, 3 button/watch batteries, 1 li-ion battery, 1 mobile phone battery, and 1 power bank. The annual AA battery waste in East Jakarta was estimated at 68 tons. Therefore, the recommended battery waste processing capacity is 85 tons per year, with a gross income for Zn recovery of Rp440,123,254 per year and for Mn recovery of Rp855,740 per year. Based on these results, it can be concluded that recycling primary/single-use batteries has the economic potential to benefit both the economy and the environment."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Benedict, Hizkia Juan
"With the rapid growing of Lithium-ion battery (LIB) across the world and in Australia for multiple purposes, LIB presents several emerging challenges such as sourcing the critical minerals (e.g., lithium, cobalt, nickel, manganese) and managing the end-of-life battery waste management. The purpose of this report is to design and develop a process that is able to recover lithium from end-of-life LIB. The proposed processing plant would be located at Townsville, Queensland. The feed that is introduced to the process plant would be 3000 t/y of cathode material. The objective of the process plant is to recycle lithium in the form of lithium phosphate (Li3PO4) and the plant is aim to produce 76.06 kg/hr of Li3PO4. The product is aim to have 99.9% of lithium. The crushing section comes following alkaline leaching through hydrometallurgy main process objective is to reduce the cathode sheets to 250 microns for further leaching processes downstream. 261.74 kg/hr of cathode sheets are entering from alkaline leaching and exit as black mass from the Node-200 at flowrate of 261.48 kg/hr. Main unit in the process is the hammer mill, which is used to reduce the sizes of the cathode sheets. Other units in the process consists of conveyor belts and compressors to transport solids and gas respectively into and exiting the hammer mill with the addition of a cyclone separator to collect black mass that is brought along when sending argon from the hammer mill out into the. The estimated cost of this plant section is 25,132,887 AUD with annual electricity usage of 52,488 kW/year.

Dengan pertumbuhan pesat baterai Lithium-ion (LIB) di seluruh dunia dan di Australia untuk berbagai tujuan, LIB menghadirkan beberapa tantangan baru seperti pengadaan mineral kritis (misalnya, lithium, kobalt, nikel, mangan) dan pengelolaan limbah baterai akhir masa pakai. Tujuan dari laporan ini adalah merancang dan mengembangkan proses yang dapat memulihkan lithium dari LIB akhir masa pakai. Pabrik pengolahan yang diusulkan akan berlokasi di Townsville, Queensland. Bahan baku yang dimasukkan ke pabrik pengolahan adalah 3000 ton per tahun material katoda. Tujuan pabrik pengolahan adalah mendaur ulang lithium dalam bentuk lithium fosfat (Li3PO4) dan pabrik ini bertujuan untuk menghasilkan 76,06 kg/jam Li3PO4. Produk tersebut ditargetkan memiliki 99,9% lithium. Bagian penghancuran mengikuti proses pelindian alkali melalui hidrometalurgi dengan tujuan utama mengurangi lembaran katoda menjadi 250 mikron untuk proses pelindian lebih lanjut di hilir. Sebanyak 261,74 kg/jam lembaran katoda masuk dari pelindian alkali dan keluar sebagai massa hitam dari Node-200 dengan laju aliran 261,48 kg/jam. Unit utama dalam proses ini adalah hammer mill, yang digunakan untuk mengurangi ukuran lembaran katoda. Unit lain dalam proses ini terdiri dari sabuk konveyor dan kompresor untuk mengangkut padatan dan gas masing-masing ke dalam dan keluar dari hammer mill dengan tambahan pemisah siklon untuk mengumpulkan massa hitam yang terbawa saat mengirimkan argon dari hammer mill keluar. Perkiraan biaya bagian pabrik ini adalah 25.132.887 AUD dengan penggunaan listrik tahunan sebesar 52.488 kW/tahun."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nicholas Axel Gratia Christie
"Dengan pertumbuhan pesat baterai Lithium-ion (LIB) di seluruh dunia dan di Australia untuk berbagai tujuan, LIB menghadirkan beberapa tantangan baru seperti sumber daya mineral kritis (misalnya, litium, kobalt, nikel, mangan) dan pengelolaan limbah baterai di akhir masa pakainya. Tujuan dari laporan ini adalah untuk merancang dan mengembangkan proses yang mampu memulihkan litium dari baterai LIB yang sudah habis masa pakainya. Pabrik pemrosesan yang diusulkan akan berlokasi di Townsville, Queensland. Umpan yang dimasukkan ke pabrik pemrosesan ini adalah 3000 ton/tahun material katoda. Tujuan dari pabrik pemrosesan ini adalah untuk mendaur ulang litium dalam bentuk lithium phosphate (Li3PO4) dan pabrik ini ditargetkan untuk memproduksi 76,06 kg/jam Li3PO4. Produk ini ditargetkan memiliki kandungan litium sebesar 99,9%. Bagian presipitasi yang mengikuti proses pencucian melalui hidrometalurgi memiliki tujuan utama untuk memulihkan litium dalam bentuk Li3PO4. 81,22 kg/jam Li2SO4 dari bagian pemurnian dan 54,09 kg/jam Na3PO4.12H2O dari tangki penyimpanan masuk ke dalam proses presipitasi. Produk dari bagian presipitasi terdiri dari 78,5 kg/jam Li3PO4 yang kemudian masuk ke bagian pencucian dan 52,3 kg/jam Na2SO4 yang keluar dari proses. Unit utama dalam proses ini adalah unit presipitasi, yang digunakan untuk memulihkan litium dengan cara mengendapkan Li2SO4 dengan Na3PO4.12H2O. Unit lain dalam proses ini terdiri dari pompa umpan/produk untuk mengangkut cairan ke/dari unit presipitasi dan tangki penyimpanan untuk menyimpan umpan/produk. Perkiraan biaya untuk bagian pabrik ini adalah 331.917,70 AUD dengan penggunaan listrik tahunan sebesar 16.704 kW/tahun.

With the rapid growing of Lithium-ion battery (LIB) across the world and in Australia for multiple purposes, LIB presents several emerging challenges such as sourcing the critical minerals (e.g., lithium, cobalt, nickel, manganese) and managing the end-of-life battery waste management. The purpose of this report is to design and develop a process that is able to recover lithium from end-of-life LIB. The proposed processing plant would be located at Townsville, Queensland. The feed that is introduced to the process plant would be 3000 t/y of cathode material. The objective of the process plant is to recycle lithium in the form of lithium phosphate (Li3PO4) and the plant is aim to produce 76.06 kg/hr of Li3PO4. The product is aim to have 99.9% of lithium. The precipitation section comes following washing through hydrometallurgy main process objective is to recover lithium in the form of Li3PO4. 81.22 kg/hr of Li2SO4 from the purification section and 54.09 kg/hr of Na3PO4.12H2O from the storage tank enters the precipitation process. The product of the precipitation section consists of 78.5 kg/hr of Li3PO4 which then enters the washing section and 52.3 kg/hr of Na2SO4 which exits the process. Main unit in the process is the precipitation unit, which is used to recover lithium by precipitating Li2SO4 with Na3PO4.12H2O. Other units in the process consists of feed/product pump to transport liquid to/from the precipitation unit and storage tank to store the feed/product. The estimated cost of this plant section is 331,917.70 AUD with annual electricity usage of 16,704 kW/year."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library