Human Immunodeficiency Virus-1 (HIV-1) merupakan virus yang merusak sel CD4+ dalam imun tubuh sehingga menyebabkan sistem kekebalan tubuh menurun drastis. Analisis data ekspresi gen HIV-1 sangat dibutuhkan. Teknologi yang digunakan untuk menganalisis data ekspresi gen yaitu microarray. Teknologi microarray digunakan untuk mengukur nilai ekspresi dari ribuan gen diberbagai macam kondisi. Clustering merupakan teknik untuk memperlajari pola data ekspresi gen kelompok observasi yang memiliki kemiripan berdasarkan kriteria tertentu. Clustering menemukan kelompok observasi pada semua atribut. Untuk menemukan kelompok observasi pada beberapa atribut digunakan analisis biclustering. Dalam data ekspesi gen series yang dibentuk dalam tiga dimensi, analisis yang digunakan adalah triclustering. Pendekatan yang dilakukan dalam membangun triclustering yaitu pendekatan biclustering melalui teknik pencarian bicluster menggunakan Multi-Objective Evolutionary Algorithm (MOEA). Metode evaluasi yang digunakan MOEA adalah Mean Square Residue (MSR) dan kebaruan dalam penelitian ini adalah memodifikasi MOEA dengan metode evaluasi Transpose Virtual Error yang mendeteksi pergeseran (shifting) dan penskalaan (scaling) sekaligus. Hasil dari bicluster terbaik digunakan sebagai input dalam THD-Tricluster. Data tricluster yang diperoleh mengandung probe ID-gen 208812_x_at, 209602_s_at, dan 201465_s_at dengan nama gen HLA-C, GATA-3 dan JUN yang berhubungan dengan HIV-1.
Human Immunodeficiency Virus-1 (HIV-1) is a virus that kills CD4 + cells in the bodys immune system, causing a drastic decline in the immune system. Analysis of HIV-1 gene expression data is urgently needed. The technology used to analyze gene expression data is microarray. Microarray technology is used to measure the expression value of thousands of genes in various conditions. Clustering is a technique for studying the gene expression data patterns of the observation groups that are similar based on certain criteria. Clustering finds groups of observations on all attributes. Biclustering analysis is used to find the group of observations on several attributes. In the gene expression series data which is formed in three dimensions, the analysis used is triclustering. The approach taken in building triclustering is the biclustering approach through the bicluster search technique using the Multi-Objective Evolutionary Algorithm (MOEA). The evaluation method used by MOEA is Mean Square Residue (MSR) and the novelty in this study is to modify the MOEA with the Transpose Virtual Error evaluation method which detects shifting and scaling at the same time. The results from the best bicluster are used as input in the THD-Tricluster. The tricluster data obtained contained the gene ID probes 208812xat, 209602s_at, and 201465sat with the gene names HLA-C, GATA-3 and JUN associated with HIV-1.
Pada penelitian ini diterapkan algoritma FABIAS (Factor Analysis for Bicluster Acquisition: Sparseness Projection) untuk mendeteksi biomarker penyakit Alzheimer pada dataset berupa 54675 data microarray ekspresi gen penyakit Alzheimer dari 161 sampel. Penelitian ini terdiri dari ekstraksi data dan seleksi gen, ekstraksi bicluster, interpretasi biologis untuk setiap bicluster, dan pendeteksian biomarker penyakit Alzheimer pada dataset yang diteliti. Hasil yang diperoleh dari penelitian ini ditemukan pada 3 daerah otak yakni daerah HIP, daerah PC, dan daerah VCX. Gen-gen biomarker penyakit Alzheimer tersebut antara lain gen BIN1, SORL1, dan CLU. Penemuan tiga gen biomarker penyakit Alzheimer dari beberapa bicluster yang dihasilkan dari penerapan algoritma FABIAS ini membuka kemungkinan adanya gen biomarker penyakit Alzheimer yang baru dari bicluster lain dengan sampel berkondisi sakit.
In this research, FABIAS algorithm (Factor Analysis for Bicluster Acquisition: Sparseness Projection) was applied to detect biomarkers of Alzheimer`s Disease in a dataset of 54.675 gene expression microarray data from 161 samples. This study consisted of data extraction and gene selection, bicluster extraction, biological interpretation of each bicluster, and biomarker detection of Alzheimer`s disease in the dataset. The results obtained from this study were found in 3 brain regions namely the HIP area, PC area, and VCX area. The biomarker of Alzheimer`s disease include BIN1, SORL1, and CLU genes. The discovery of three biomarker genes from some biclusters resulting from implementation of the FABIAS algorithm opens up the possibility of finding new Alzheimer`s disease biomarker gene from other bicluster with sick condition samples.
Triclustering merupakan teknik analisis pada data 3D yang bertujuan untuk mengelompokkan data secara bersamaan pada baris dan kolom di sepanjang waktu/kondisi yang berbeda. Hasil dari teknik ini disebut dengan tricluster. Tricluster merupakan subruang berupa subset dari baris, kolom, dan waktu/kondisi. Triclustering biasanya digunakan untuk menganalisis data ekspresi gen. Studi dan analisis data ekspresi gen selama perkembangan suatu penyakit merupakan masalah penelitian yang penting dalam bioinformatika dan aspek klinis. Oleh karena itu, penelitian ini mengimplementasikan metode THD-Tricluster dengan new residue score pada data ekspresi gen perkembangan penyakit HIV-1 yang terdiri dari 22283 probe id, 40 observasi, dan 4 kondisi. Pada tahap pertama dilakukan pencarian bicluster dengan lift algorithm berdasarkan nilai new residue score dengan threshold . Pada tahap kedua dilakukan pencarian tricluster dengan menentukan minimum probe dan minimum observasi  sehingga memperoleh 33 tricluster. Hasil evaluasi tricluster menggunakan Inter-temporal Homogeneity dengan threshold  diperoleh 32 tricluster yang menunjukkan 3 gen yang terkait dengan HIV-1 yaitu HLA-C, ELF-1, dan JUN.
Triclustering is an analysis technique on 3D data that aims to group data simultaneously on rows and columns across different times/conditions. The result of this technique is called a tricluster. Triclusters are a subspace consisting of a subset of rows, columns, and time/conditions. Triclustering is commonly used to analyze gene expression data. The study and analysis of gene expression data during disease progression is an important issue in the research of bioinformatics and clinical aspects. Therefore, this study implements the THD-Tricluster method with a new residue score on the gene expression data for HIV-1 disease progression consisting of 22283 probe id, 40 observations, and 4 conditions. In the first stage, a bicluster search was carried out with a lift algorithm based on the new residue score with a threshold of I = 0.08. In the second stage, the tricluster search was carried out by determining the minimum probe = 5 and the minimum observation = 2 to obtain 33 triclusters. The results of the tricluster evaluations using Inter-temporal Homogeneity with a threshold of Ã? = 0.8 obtained 32 triclusters which shows 3 genes related to HIV-1, namely HLA-C, ELF-1, and JUN.