Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 20 dokumen yang sesuai dengan query
cover
Sofia Debi Puspa
Abstrak :
Penelitian ini bertujuan untuk mengimplementasikan similarity based biclustering SBB dalam memperoleh bicluster sekumpulan gen dengan ekspresi yang similar di bawah kondisi tertentu yang signifikan pada data microarray. Secara teoritis similarity based biclustering terdiri atas tiga tahap utama, yaitu: membangun matriks similaritas baris gen dan matriks similaritas kolom kondisi , mempartisi masing-masing matriks similaritas dengan hard clustering khususnya dalam penelitian ini menggunakan partisi k-means, dan ekstrak bicluster. Sebelum mengimplementasikan metode SBB, strategi seleksi gen diterapkan dan selanjutnya dilakukan normalisasi. Perolehan evaluasi indeks silhouette pada dataset diabetic nephropathy, diabetic retinopathy dan lymphoma berturut-turut pada cluster kondisi yaitu 0,8304; 0,7853 dan 0,7382, sedangkan indeks silhouette untuk cluster gen yaitu 0,5382; 0,5408 dan 0,5464. Dan dari hasil analisis cluster kondisi, akurasi dari dataset diabetic nephropathy dan diabetic retinopathy yaitu 100 , sedangkan dataset lymphoma yaitu 98 . Selanjutnya dapat diketahui regulasi proses seluler yang terjadi pada bicluster dari ketiga dataset. Hasil analisis menunjukkan bahwa gen-gen yang diperoleh dari bicluster sesuai dengan fungsi gen dan proses biologis didukung oleh GO enrichment sehingga menjadi potensi yang besar bagi praktisi medis dalam tindak lanjut suatu penyakit yang diderita oleh pasien. ...... This study aims to implement similarity based biclustering SBB in obtaining a bicluster a set of genes that exhibit similar levels of gene expression under certain conditions that is significant in microarray data. Theoretically, similarity based biclustering consists of three main phase constructing the row gene similarity matrix and the column condition similarity matrix, partitioning each matrix similarity with hard clustering especially in this research using k means partition, and extracting bicluster. Before implementing the SBB method, the gene selection strategy is applied and subsequently normalized. The acquisition of silhouette index evaluation in diabetic nephropathy, diabetic retinopathy, and lymphoma on cluster condition respectively is 0.8304, 0.7853 and 0.7382, while the silhouette index for the gene cluster is 0.5382, 0.5408 and 0.5464. In addition, according to the cluster condition analysis, accuracy of dataset diabetic nephropathy and diabetic retinopathy is 100 , whereas dataset lymphoma is 98 . Furthermore, it can be known cellular regulation that occurs on the bicluster of the three datasets. The results of the analysis show that the genes obtained from bicluster are relevant to the function of genes and biological processes supported by GO enrichment , therefore it becomes a great potential for medical practitioners in the follow up of a disease suffered by the patient.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49530
UI - Tesis Membership  Universitas Indonesia Library
cover
Moh. Abdul Latief
Abstrak :

Human Immunodeficiency Virus-1 (HIV-1) merupakan virus yang merusak sel CD4+ dalam imun tubuh sehingga menyebabkan sistem kekebalan tubuh menurun drastis. Analisis data ekspresi gen HIV-1 sangat dibutuhkan. Teknologi yang digunakan untuk menganalisis data ekspresi gen yaitu microarray. Teknologi microarray digunakan untuk mengukur nilai ekspresi dari ribuan gen diberbagai macam kondisi. Clustering merupakan teknik untuk memperlajari pola data ekspresi gen kelompok observasi yang memiliki kemiripan berdasarkan kriteria tertentu. Clustering menemukan kelompok observasi pada semua atribut. Untuk menemukan kelompok observasi pada beberapa atribut digunakan analisis biclustering. Dalam data ekspesi gen series yang dibentuk dalam tiga dimensi, analisis yang digunakan adalah triclustering. Pendekatan yang dilakukan dalam membangun triclustering yaitu pendekatan biclustering melalui teknik pencarian bicluster menggunakan Multi-Objective Evolutionary Algorithm (MOEA). Metode evaluasi yang digunakan MOEA adalah Mean Square Residue (MSR) dan kebaruan dalam penelitian ini adalah memodifikasi MOEA dengan metode evaluasi Transpose Virtual Error yang mendeteksi pergeseran (shifting) dan penskalaan (scaling) sekaligus. Hasil dari bicluster terbaik digunakan sebagai input dalam THD-Tricluster. Data tricluster yang diperoleh mengandung probe ID-gen 208812_x_at, 209602_s_at, dan 201465_s_at dengan nama gen HLA-C, GATA-3 dan JUN yang berhubungan dengan HIV-1.

 


Human Immunodeficiency Virus-1 (HIV-1) is a virus that kills CD4 + cells in the bodys immune system, causing a drastic decline in the immune system. Analysis of HIV-1 gene expression data is urgently needed. The technology used to analyze gene expression data is microarray. Microarray technology is used to measure the expression value of thousands of genes in various conditions. Clustering is a technique for studying the gene expression data patterns of the observation groups that are similar based on certain criteria. Clustering finds groups of observations on all attributes. Biclustering analysis is used to find the group of observations on several attributes. In the gene expression series data which is formed in three dimensions, the analysis used is triclustering. The approach taken in building triclustering is the biclustering approach through the bicluster search technique using the Multi-Objective Evolutionary Algorithm (MOEA). The evaluation method used by MOEA is Mean Square Residue (MSR) and the novelty in this study is to modify the MOEA with the Transpose Virtual Error evaluation method which detects shifting and scaling at the same time. The results from the best bicluster are used as input in the THD-Tricluster. The tricluster data obtained contained the gene ID probes 208812xat, 209602s_at, and 201465sat with the gene names HLA-C, GATA-3 and JUN associated with HIV-1.

 

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Syamira Merina
Abstrak :
Adenoma merupakan jenis tumor jinak pada lapisan epidermis jaringan. Adenoma dapat berubah menjadi kanker ganas yang kemudian disebut Adenocarcinoma. Terdapat salah satu bentuk data biologi molekuler yang sedang berkembang saat ini, yaitu data ekspresi gen microarray. Microarray dapat digunakan untuk pendeteksian dan penelitian dalam bidang onkologi. Salah satu metode untuk mengolah dan menganalisis data ekspresi gen microarray adalah dengan biclustering. Dalam skripsi ini akan dilakukan implementasi salah satu metode biclustering pada data ekspresi gen microarray, yaitu dengan algoritma Binary Inclusion-Maximal. Algoritma akan diimplementasi pada data Adenoma kolon yang terdiri dari 7070 gen dengan 4 sampel sel adenoma dan 4 sampel sel normal. Implementasi tersebut membutuhkan waktu kurang dari 1 detik dan menghasilkan 22 bicluster yang terdiri dari 25 gen secara keseluruhan. ...... Adenoma is a benign type of tumor in the epidermal layer of a tissue. Adenoma can turn into a malignant cancer which is then called Adenocarcinoma. There is a form of molecular biology data which is developing today, namely microarray gene expression data. Microarray can be use for detection and research in the field of oncology. One method for processing and analyzing microarray gene data is by biclustering. In this study the writer will be using one method of biclustering, the Binary Inclusion Maximal algorithm, and implement it on microarray gene expression data. The algorithm will be implemented on Colon Adenoma data consisting of 7070 genes with 4 adenoma cell samples and 4 normal cell samples. The implementation took less than one second and resulted in 22 biclusters composed of 25 genes.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Dwi Putri
Abstrak :
Bioinformatika kerap digunakan oleh para peneliti untuk mempelajari berbagai penyakit yang ada pada tubuh manusia, salah satunya yaitu kanker payudara. Penelitian terhadap kanker payudara tersebut dilakukan dengan tujuan untuk menemukan jenis pengobatan terbaik bagi para pasien penderita kanker payudara. Data ekspresi gen merupakan salah satu komponen utama dalam penelitian mengenai pengobatan kanker payudara dan data tersebut dapat diperoleh dengan menggunakan alat dan teknologi microarray. Akan tetapi, seringkali ditemukan beberapa nilai yang hilang (missing values) pada data ekspresi gen yang dapat disebabkan oleh kesalahan teknis seperti kerusakan pada chip dan gambar. Adanya missing values juga dapat mengakibatkan masalah ketika proses analisis data selanjutnya, dimana terdapat metode analisis data yang memerlukan data lengkap seperti klasifikasi dan clustering. Oleh sebab itu, perlu dilakukan proses imputasi terhadap missing values agar hasil analisis data yang diperoleh lebih akurat. Pada penelitian ini, metode imputasi missing values yang digunakan yaitu SBi-MSREimpute. SBi-MSREimpute adalah metode imputasi berbasis biclustering dimana bicluster dibentuk berdasarkan suatu kriteria yang melibatkan skor Mean Squared Residue dan jarak Euclidean. Metode SBi-MSREimpute diimplementasikan pada data ekspresi gen pasien penderita kanker payudara stadium awal yang telah diberikan jenis obat MK-2206. Kinerja metode SBi-MSREimpute dilihat dengan membandingkan hasil imputasi metode SBi-MSREimpute dengan metode imputasi lain yaitu metode imputasi menggunakan weighted average berdasarkan skor Normalized Root-Mean-Square-Error (NRMSE). Hasil evaluasi dengan skor NRMSE tersebut menunjukkan bahwa kinerja metode SBi-MSREimpute dapat dipengaruhi oleh penentuan nilai k yang ada pada metode SBi-MSREimpute. ......Bioinformatics is often used by researchers to study various diseases that exist in the human body, one of which is breast cancer. The research on breast cancer was conducted with the aim of finding the best type of treatment for breast cancer patients. Gene expression data is one of the main components in research on breast cancer treatment and this data can be obtained using microarray tools and technology. However, there are often missing values found in gene expression data that can be caused by technical errors such as damage to chips and images. The existence of missing values ​​can also cause problems during the data analysis process, where there are data analysis methods that require complete data such as classification and clustering. Therefore, it is necessary to carry out an imputation process for missing values ​​so that the data analysis results obtained are more accurate. In this study, the missing values ​​imputation method used was SBi-MSREimpute. SBi-MSREimpute is a biclustering-based imputation method where the bicluster is formed based on a criterion involving Mean Squared Residue and Euclidean Distance. In this study, the SBi-MSREimpute method was applied to the gene expression data of patients with early stage breast cancer who had been given the MK-2206 type of drug. The performance of the SBi-MSREimpute method is assessed by comparing the results of the imputation using SBi-MSREimpute method with other imputation methods, namely the imputation method using weighted average, based on the Normalized Root-Mean-Square-Error score (NRMSE). The results of the evaluation with NRMSE score showed that the performance of the SBi-MSREimpute method can be affected by the determination of k value in the SBi-MSREimpute method.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Silvia
Abstrak :
Teknologi microarray merupakan analisis terhadap tingkat ekspresi puluhan ribu gen secara paralel untuk melihat perbedaan ekspresi gen. Penelitian microarray menghasilkan suatu nilai yang dirangkum dalam sebuah data yang disebut sebagai data ekspresi gen. Data ekspresi gen umumnya memiliki ukuran yang besar dan penggunaannya luas. Akan tetapi, data ekspresi gen sering mengalami masalah missing values. Data ekspresi gen umumnya mengandung persentase missing values sebesar 10% atau bahkan hingga 90% gen memiliki satu hingga lebih missing values. Salah satu solusi untuk mengatasi adanya missing values adalah dengan menggunakan teknik imputasi.  Pada penelitian ini, diajukan metode imputasi missing values Chronological Biclustering dengan basis PCor-MSRE yang berdasarkan pada konsep biclustering. Penentuan anggota bicluster dengan kesamaan sifat co-expressed dan ukuran magnitude dilakukan berdasarkan pada skor Mean Squared Residue (MSR), jarak Euclidean, dan ukuran jarak korelasi Pearson antara masing-masing gen dengan gen yang mengandung missing values. Dilakukan perhitungan skor MSR, jarak Euclidean, dan ukuran jarak korelasi Pearson pada setiap gen, kemudian dipilih k gen yang memberikan skor terkecil untuk masing-masing kriteria. Selanjutnya, dibentuk bicluster yang digunakan untuk mengimputasi nilai observasi yang missing. Metode ini merupakan pengembangan dari metode SBi-MSREimpute yang cocok digunakan pada data ekspresi gen non-time series atau time series. Metode diimplementasikan pada data ekspresi gen lengkapnon-time series GSE142693 mengenai sel tumor 12 pasien Glioblastoma. Pada data GSE142693, dilakukan konstruksi missing values MCAR dengan missing rate sebesar 5%, 10%, 20%, 30%, 40%, 50%, dan 60%. Performa metode diukur dengan skor NRMSE dan korelasi Pearson, kemudian dibandingkan dengan metode SBi-MSREimpute. Berdasarkan pada skor korelasi Pearson, metode Chronological Biclustering dengan basis PCor-MSRE merupakan metode yang cukup baik dibanding SBi-MSREimpute dalam mengimputasi missing values pada data GSE142693 jika missing rate-nya cukup besar (40%, 50% dan 60%) dengan penggunaan nilai yaitu  dan. Untuk nilai k yang lebih kecil dari 25, metode Chronological Biclustering dengan basis PCor-MSRE cukup baik digunakan (dibanding SBi-MSREimpute) jika jumlah observasi yang missing sebanyak 50% dan 60%. Performa metode Chronological Biclustering dengan basis PCor-MSRE semakin baik seiring dengan membesarnya nilai k yang digunakan. Artinya, performa metode Chronological Biclustering dengan basis PCor-MSRE dapat dipengaruhi oleh penentuan nilai k di awal. ......Microarray technology is an analysis of the expression levels of tens of thousands of genes in parallel to see differences in gene expression. Microarray research produces a value that is summarized in a data called gene expression data. Gene expression data are generally large in size and widely used. However, gene expression data often suffer from missing values problems. Gene expression data generally contain a percentage of missing values of 10% or even up to 90% of genes having one or more missing values. One solution to overcome the missing values is to use the imputation technique. In this research, the method of imputing missing values Chronological Biclustering is proposed on the PCor - MSRE basis which is based on the biclustering concept. Determination of bicluster members with similar co-expressed traits and magnitude measures was carried out based on the Mean Squared Residue (MSR) score, the Euclidean distance, and the measure of the Pearson correlation distance between each gene and the gene containing missing values. The MSR score, Euclidean distance, and Pearson correlation distance measures were calculated for each gene, then k genes were selected that gave the smallest score for each criterion. Next, a bicluster is formed which is used to impute the missing observation values. This method is a development of the SBi-MSRE impute method which is suitable for use in non-time series or time series gene expression data. The method was implemented on the complete non-time series gene expression data GSE142693 regarding tumor cells of 12 Glioblastoma patients. In the GSE142693 data, MCAR missing values were constructed with a missing rate of 5%, 10%, 20%, 30%, 40%, 50%, and 60%. The performance of the method was measured by the NRMSE score and Pearson correlation, then compared with the SBi-MSREimpute method. Based on the Pearson correlation score, the Chronological Biclustering method with PCor - MSRE basis is a method that is quite good compared to SBi-MSRE impute in imputing missing values in GSE142693 data if the missing rate is large enough (40%, 50% and 60%) with the use of namely k=25,k=45,k=65,k=105,k=335, and k=375. For k values less than 25, the Chronological Biclustering method on the basis of PCor - MSRE is quite good to use (compared to SBi-MSRE impute) if the number of missing observations are 50% and 60%. The performance of the Chronological Biclustering method on the PCor - MSRE basis is getting better as the value of k used increases. This means that the performance of the Chronological Biclustering method on the PCor-MSRE basis can be affected by determining the initial k value.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fenni Amalia
Abstrak :
Bioinformatika merupakan ilmu yang ditujukan untuk menganalisis informasi biologis. Dalam perkembangan penelitian bioinformatika, data diperoleh salah satunya dengan menggunakan teknologi microarray. Teknologi microarray digunakan oleh lingkup biologi molekuler dalam melihat perbedaan tingkat ekspresi gen dengan cara mengonversi gambar monokromik yang berisi ratusan bahkan ribuan gen dari sampel sel dan menghasilkan data ekspresi gen. Teknologi microarray sering kali menghasilkan data ekspresi gen yang hilang atau tidak terdeteksi akibat adanya kesalahan teknis. Oleh karena itu, diperlukannya suatu metode imputasi pada data untuk mengatasi missing values. Pada penelitian ini, akan dikembangkan suatu metode imputasi yang disebut Biclustering Terurut berbasis k-Nearest Neighbor, Mean Squared Residual, dan Jarak Euclidean. Metode ini merupakan metode imputasi berbasis biclustering dimana bicluster dibentuk berdasarkan suatu kriteria yang melibatkan skor Mean Squared Residue dan Jarak Euclidean. Penggunakan k-Nearest Neighbor sebagai metode pra-imputasi didasarkan pada data ekspresi gen yang sering kali memiliki pola kompleks dan sulit terdeteksi, sehingga perlu pendekatan yang dapat memetakan struktur korelasi pada data. k-Nearest Neighbor mempertimbangkan korelasi pada data microarray dengan menyeleksi kumpulan gen yang memiliki profil ekspresi mirip dengan gen yang ingin diimputasi (gen target). Pada penelitian ini, metode SBi-kNN-MSREimpute diterapkan pada data ekspresi gen pasien penderita COVID-19 yang dilakukan tes rapid harian. Evaluasi kinerja metode SBi-kNN-MSREimpute dilakukan dengan menggunakan NRMSE, dimana hasilnya dibandingkan dengan metode SBi-MSREimpute. Berdasarkan penelitian yang dilakukan, metode SBi-kNN-MSREimpute dinilai lebih baik dibandingkan dengan SBi-MSREimpute untuk setiap missing rate pada tingkatan c berbeda. Nilai c optimal untuk imputasi missing values pada data COVID-19 adalah c = 10% untuk missing rate 25%, 30%, 40% dan c = 15% untuk missing rate 5%, 10%, 15%, 20%, dan 50%. Hasil akhir juga menunjukkan bahwa nilai NRMSE untuk SBi-kNN-MSREimpute relatif stabil bahkan untuk data dengan missing rate tinggi hingga 50%. ......Bioinformatics is a study designed to analyze biological information. In the development of bioinformatics research, data was obtained using microarray technology. Microarray technology is used by the scope of molecular biology in transposing hundreds and even thousands of genes from cellular samples simultaneously and producing a gene expression data. Microarray technology often produces data that is lost or undetected as a result of technical error. Therefore, an imputation method is needed to address the missing values. In this study, a new imputation method called Sequential Biclustering based k-Nearest Neighbor, Mean Squared Residual, and Euclidean Distance (SBi-kNN-MSRE) will be developed. This method is a biclustering-based imputation method where the bicluster is formed based on a criterion involving Mean Squared Residue and Euclidean Distance. The use of k-Nearest Neighbor as a pre-imputation method is based on data on gene expression that often has a complex and difficult pattern of detection, so it requires an approach that can map correlation structures on data. K-nearest neighbor considers a correlation on a microarray data by selecting groups of genes that have an expression profile similar to a gene that wants to be imputed (the target gene). In this study, the SBi-kNN-MSRE method was applied to the data on the genes of patients with covid-19 that daily rapid tests were performed. The performance evaluation of the SBi-kNN-MSRE method is done using NRMSE, where the results are compared to the SBi-MSRE method. According to the result, the SBi-kNN-MSRE method performed better than SBi-kNN-MSRE for each missing rate on different c levels. The optimal c value on the covid-19 data is c = 10% for missing rate 25%, 30%, 40% and c = 15% for missing rate 5%, 10%, 15%, 20% and 50%. The results also showed that NRMSE scores
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tampubolon, Patuan Pangihutan
Abstrak :
Kebutuhan untuk mendapatkan pola yang terbentuk dari matriks biner pada masa ini dan mendatang, meningkat dengan pesat. Data dari 'clickstream' pengguna internet, 'face-recognition', matriks setelah dilakukan prapengolahan dari data kategorik, interaksi protein-protein dan masih banyak daftar lainnya yang menghasilkan matriks biner. Salah satu pola yang dapat dibentuk dari matriks biner merupakan satu himpunan submatriks yang semua entrinya bernilai 1. Submatrik tersebut disebut dengan 'bicluste''r' dengan jenis nilai konstan. Permasalahan dari pembentukan 'bicluster' disebut dengan 'biclustering'. Permasalahan tersebut tergolong dalam permasalahan 'NP-complete'. Meskipun demikian, hasil yang suboptimal mampu didapatkan dengan membuat algoritma 'biclustering'. Penelitian ini mengusulkan suatu algoritma 'biclustering' baru dengan menggunakan jarak 'Hamming' antara satu kolom dengan kolom yang lainnya pada matriks biner. Algoritma yang diberi nama 'bicHPT' ('biclustering based on Hamming distance Pattern Table') ini, mampu membuat satu himpunan 'bicluster' dengan lima langkah, yaitu mereduksi kolom matriks, membuat tabel jarak 'Hamming', mencari kandidat 'bicluster', menyaring kandidat 'bicluster', dan membentuk 'bicluster'. Setelah uji coba performa, algoritma 'bicHPT' mampu menghasilkan satu himpunan 'bicluster', bahkan mampu mengungguli algoritma lain dalam hal jumlah 'bicluster' yang dibentuk. Algoritma ini juga mampu untuk diaplikasikan sebagai salah satu unsur yang digunakan untuk memprediksi interaksi protein-protein baru, antara protein 'Human Immunodeficiency Virus type' 1 (HIV-1) dan protein manusia. Total interaksi baru yang didapatkan dengan menggunakan algoritma ini ada sebanyak 482 interaksi. ...... The demand to obtain patterns from a binary matrix today and in the future is rapidly increasing. Data from internet users clickstreams, face-recognition, the matrix after preprocessing categorical data, protein-protein interactions, and so on that will produce a binary matrix. One kind of pattern that might be obtained from a binary matrix is a set of submatrices which all their entries have the value of 1. A submatrix is called with bicluster with constant values. The problem to make biclusters is called with biclustering. This problem is NP-complete. Although, the suboptimal solution might be obtained with constructing a biclustering algorithm. This research proposes a novel biclustering algorithm based on Hamming distance among each column in a binary matrix. The algorithm which called with \pt (biclustering based on Hamming distance Pattern Table) can produce biclusters in 5 steps, which are, the column reduction of the matrix, constructing Hamming distance table, finding bicluster candidate, filtering bicluster candidate and forming the biclusters. After testing the performance, this algorithm can produce biclusters. Moreover, it can outperform another algorithm in numbers of biclusters. This algorithm is also succeeded to be applied as one of the elements to predict protein-protein interaction between Human Immunodeficiency Virus type 1 protein (HIV-1) and human protein. The total new interactions which using this algorithm are 482 interaction.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T52670
UI - Tesis Membership  Universitas Indonesia Library
cover
Wutun, Theresia Bunga Palang
Abstrak :
ABSTRAK

Pada penelitian ini diterapkan algoritma FABIAS (Factor Analysis for Bicluster Acquisition: Sparseness Projection) untuk mendeteksi biomarker penyakit Alzheimer pada dataset berupa 54675 data microarray ekspresi gen penyakit Alzheimer dari 161 sampel. Penelitian ini terdiri dari ekstraksi data dan seleksi gen, ekstraksi bicluster, interpretasi biologis untuk setiap bicluster, dan pendeteksian biomarker penyakit Alzheimer pada dataset yang diteliti. Hasil yang diperoleh dari penelitian ini ditemukan pada 3 daerah otak yakni daerah HIP, daerah PC, dan daerah VCX. Gen-gen biomarker penyakit Alzheimer tersebut antara lain gen BIN1, SORL1, dan CLU. Penemuan tiga gen biomarker penyakit Alzheimer dari beberapa bicluster yang dihasilkan dari penerapan algoritma FABIAS ini membuka kemungkinan adanya gen biomarker penyakit Alzheimer yang baru dari bicluster lain dengan sampel berkondisi sakit.


ABSTRACT


In this research, FABIAS algorithm (Factor Analysis for Bicluster Acquisition: Sparseness Projection) was applied to detect biomarkers of Alzheimer`s Disease in a dataset of 54.675 gene expression microarray data from 161 samples. This study consisted of data extraction and gene selection, bicluster extraction, biological interpretation of each bicluster, and biomarker detection of Alzheimer`s disease in the dataset. The results obtained from this study were found in 3 brain regions namely the HIP area, PC area, and VCX area. The biomarker of Alzheimer`s disease include BIN1, SORL1, and CLU genes. The discovery of three biomarker genes from some biclusters resulting from implementation of the FABIAS algorithm opens up the possibility of finding new Alzheimer`s disease biomarker gene from other bicluster with sick condition samples.

2019
T53941
UI - Tesis Membership  Universitas Indonesia Library
cover
Tesdiq Prigel Kaloka
Abstrak :
ABSTRAK
Protein merupakan bagian penting dari organisme dan memiliki fungsi yang berbeda. Fungsi dan sifat interaksi protein dapat diketahui dengan mengelompokkan protein-protein yang saling berinteraksi. Objek penelitian ini adalah interaksi antara protein HIV-1 dan manusia. Biclustering merupakan metode yang dapat digunakan untuk menyelesaikan permasalahan interaksi protein. Interaksi dibagi menjadi dua, yaitu interaksi positif dan negatif, selanjutnya diubah menjadi graf bipartit dengan simpul merupakan protein HIV-1 dan protein manusia, sedangkan busur merupakan jenis interaksi yang terjadi. Algoritma POLS merupakan algoritma biclustering yang menggunakan pendekatan teori graf. Hasil bicluster dianalisis menggunakan Gene Ontology (GO) untuk memperoleh fungsi protein pada satu bicluster. Proses terakhir adalah prediksi interaksi protein berdasarkan analisis fungsi-fungsi protein. Metode yang digunakan adalah Support Vector Machine (SVM) karena SVM merupakan metode prediksi machine learning yang robust. Berdasarkan hasil penelitian, dataset interaksi positif terdapat 297 bicluster dengan bicluster terbanyak berukuran 2 X 2 dan bicluster terbesar berukuran 7 X 7. Dataset interaksi negatif diperoleh 203 bicluster dengan 110 bicluster berukuran 2 X 2 dan satu bicluster berukuran 7 X 7. Berdasarkan hasil analisis GO, terdapat protein dalam satu bicluster yang belum diketahui fungsinya. Akurasi model prediksi untuk interaksi positif = 92% dan interaksi negatif = 88%.
ABSTRACT
Protein is an important part of the organism. The function of protein can be known by grouping the interact proteins. This research discusses the interaction between HIV-1 and human protein. Biclustering is a method to solve protein interaction problem. The interaction is divided into two types, called positive and negative interactions The interaction is transformed into a bipartite graph with vertices are HIV-1 and human protein, while the edges are the interaction. POLS algorithm is a biclustering method based on graph theory. The result of a bicluster is analyzed using Gene Ontology (GO). The last process is the prediction of protein interactions based on analysis of GO. We used Support Vector Machine (SVM) because SVM is a robust machine learning method for perdiction. Based on the results, we get 297 biclusters, with 171 biclusters sized 2 X 2 and the largest bicluster sized 7 X 7 for the positive interactions. For the negative interaction, we get 203 biclusters, with 110 biclusters sized 2 X 2 and the largest bicluster sized 7 X 7. Based on GO analysis there were an unknown function in a bicluster. Accuracy of prediction models for positive and negative interaction are 92% and 88% respectively.
2019
T54139
UI - Tesis Membership  Universitas Indonesia Library
cover
Elke Annisa Octaria
Abstrak :

Triclustering merupakan teknik analisis pada data 3D yang bertujuan untuk mengelompokkan data secara bersamaan pada baris dan kolom di sepanjang waktu/kondisi yang berbeda. Hasil dari teknik ini disebut dengan tricluster. Tricluster merupakan subruang berupa subset dari baris, kolom, dan waktu/kondisi. Triclustering biasanya digunakan untuk menganalisis data ekspresi gen. Studi dan analisis data ekspresi gen selama perkembangan suatu penyakit merupakan masalah penelitian yang penting dalam bioinformatika dan aspek klinis. Oleh karena itu, penelitian ini mengimplementasikan metode THD-Tricluster dengan new residue score pada data ekspresi gen perkembangan penyakit HIV-1 yang terdiri dari 22283 probe id, 40 observasi, dan 4 kondisi. Pada tahap pertama dilakukan pencarian bicluster dengan lift algorithm berdasarkan nilai new residue score dengan threshold . Pada tahap kedua dilakukan pencarian tricluster dengan menentukan minimum probe dan minimum observasi  sehingga memperoleh 33 tricluster. Hasil evaluasi tricluster menggunakan Inter-temporal Homogeneity dengan threshold  diperoleh 32 tricluster yang menunjukkan 3 gen yang terkait dengan HIV-1 yaitu HLA-C, ELF-1, dan JUN.


Triclustering is an analysis technique on 3D data that aims to group data simultaneously on rows and columns across different times/conditions. The result of this technique is called a tricluster. Triclusters are a subspace consisting of a subset of rows, columns, and time/conditions. Triclustering is commonly used to analyze gene expression data. The study and analysis of gene expression data during disease progression is an important issue in the research of bioinformatics and clinical aspects. Therefore, this study implements the THD-Tricluster method with a new residue score on the gene expression data for HIV-1 disease progression consisting of 22283 probe id, 40 observations, and 4 conditions. In the first stage, a bicluster search was carried out with a lift algorithm based on the new residue score with a threshold of I = 0.08. In the second stage, the tricluster search was carried out by determining the minimum probe = 5 and the minimum observation = 2 to obtain 33 triclusters. The results of the tricluster evaluations using Inter-temporal Homogeneity with a threshold of Ï? = 0.8 obtained 32 triclusters which shows 3 genes related to HIV-1, namely HLA-C, ELF-1, and JUN.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>