Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Awlia Dwi Rachma
"

Metode THD-Tricluster merupakan analisis triclustering dengan pendekatan berbasis biclustering. Pada metode THD-Tricluster digunakan nilai Shifting-and-Scaling Similarity untuk membentuk bicluster terlebih dahulu dan dilanjutkan dengan membentuk tricluster. Nilai SSSim menggunakan Shifting-and-Scaling Correlation untuk mendeteksi adanya  korelasi antaranggota dengan pola pergeseran dan penskalaan serta koherensi antarwaktu dan membandingkannya dengan nilai threshold. Metode THD-Tricluster dilakukan pada data respon pengobatan terapi interferon-beta pada pasien sklerosis ganda. Skenario optimal adalah skenario dengan nilai coverage terkecil yaitu saat menggunakan nilai threshold tertinggi. Pada skenario tersebut diperoleh dua jenis tricluster yaitu tricluster yang memiliki kumpulan gen pada pasien yang responsif dan pasien yang tidak responsif terhadap terapi. Perbedaan kumpulan gen pada kedua tricluster dapat digunakan oleh para ahli medis untuk mengembangkan pengobatan terapi  untuk meningkatkan tingkat keresponsifan pasien sklerosis ganda terhadap terapi tersebut.


The THD-Tricluster method is a triclustering analysis with a biclustering-based approach. The THD-Tricluster method uses the Shifting-and-Scaling Similarity value to form a bicluster first and shows it by forming a tricluster. The SSSim value uses Shifting-and-Scaling Correlation to use an interface with shifting and scaling patterns as well as intertemporal coherence and compares it with the threshold value. The THD-Tricluster method was performed on treatment response data to interferon-beta therapy in multiple sclerosis patients. The optimal scenario is a scenario with a coverage value scenario that uses the highest threshold value. In this scenario, there are two types of tricluster, namely the tricluster which has a collection of genes in responsive patients and patients who are not responsive to therapy. Differences in gene pools in the two tricluster can be used by medical professionals to develop IFN-β therapeutic treatments to increase the responsiveness of multiple sclerosis patients to these therapies.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sanjung Maharani
"Triclustering merupakan salah satu teknik data mining pada data tiga dimensi untuk mengelompokkan data secara bersamaan pada baris dan kolom di titik waktu yang berbeda menjadi tricluster. Metode ini umumnya diterapkan pada bidang bioinformatika, khususnya data ekspresi gen tiga dimensi. Salah satu triclustering dengan pendekatan biclustering-based adalah THD-Tricluster. Langkah utama dari algoritma ini ialah generate bicluster dan genereate tricluster. Algoritma THD-Tricluster menggunakan pola pergeseran dan penskalaan dengan nilai Shifting-and-Scaling-Similarity (SSSim) untuk mengelompokkan gen dan menghasilkan tricluster. Hasil dari THD-Tricluster dievaluasi dengan Multi Slope Measure (MSL) yaitu sebuah pengukuran kualitas melalui representasi grafik dari tricluster. Dalam penelitian ini, data yang digunakan adalah data respon tiga sel individu terhadap pemberian sitokin berupa interleukin-1-beta pada sel mesenkim amnion manusia atau sel pada membran janin. Sitokin memicu regulasi gen inflamasi yang berkontribusi pada kelahiran prematur. Metode THD-Tricluster diimplementasikan pada 15 skenario dengan nilai threshold berbeda. Skenario yang optimal dipilih menggunakan nilai validasi coverage. Pada skenario optimal, diperoleh delapan tricluster yang kemudian dievaluasi menggunakan Multi Slope Measure (MSL). Tricluster 2 yang memiliki nilai MSL paling kecil dan dipilih sebagai tricluster optimal terdiri atas kumpulan gen dari sel yang responsif terhadap pemberian sitokin berupa interleukin-1-beta. Gen-gen pada Tricluster 2 inilah yang dapat digunakan sebagai bahan pertimbangan bagi para peneliti di bidang biologis dan medis untuk untuk penelitian lebih lanjut terkait kelahiran prematur.

Triclustering is one of the data mining techniques on three-dimensional data to cluster data simultaneously in rows and columns at different time points into triclusters. This method is generally applied to the field of bioinformatics, especially three-dimensional gene expression data. One of the triclustering methods with a biclustering-based approach is THD-Tricluster. The main steps of this algorithm are generate bicluster and generate tricluster. THD-Tricluster algorithm uses shifting and scaling patterns with Shifting-and-Scaling-Similarity (SSSim) values to cluster genes and generate tricluster. The result of THD-Tricluster is evaluated by Multi Slope Measure (MSL), a measurement of tricluster quality through graphical representation. In this study, the data used is the response data of three individual cells to cytokine in the form of interleukin-1-beta in human amniotic mesenchymal cells or cells in the fetal membrane. Cytokines stimulate the regulation of inflammatory genes that contribute to preterm birth. The THD-Tricluster method was implemented on 15 scenarios with different threshold values. The optimal scenario was selected using the coverage validation value. In the optimal scenario, eight triclusters were obtained which were then evaluated using Multi Slope Measure (MSL). Tricluster 2 which has the smallest MSL value and selected as the optimal consists of a collection of genes from cells that are responsive to cytokine administration in the form of interleukin-1-beta. The genes in Tricluster 2 can be used by biological and medical researchers to develop treatments to prevent premature birth."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library