Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Yogi Lesmana Sulestio
Abstrak :
Penelitian Part-of-Speech tagger (POS tagger) untuk bahasa Indonesia telah banyak dikembangkan. Sayangnya, sejauh ini baru Polyglot yang menggunakan POS tag menurut pedoman anotasi Universal Dependencies (UD). Namun, Polyglot sendiri masih mempunyai kekurangan karena belum dapat mengatasi klitik dan kata ulang yang terdapat dalam bahasa Indonesia. Tujuan penelitian ini adalah mengembangkan POS tagger untuk bahasa Indonesia yang tidak hanya sesuai dengan ketentuan anotasi UD, tapi juga sudah mengatasi kekurangan Polyglot. POS tagger ini akan dikembangkan dengan metode deep learning menggunakan arsitektur yang merupakan versi modifikasi dari Recurrent Neural Network (RNN), yaitu Bidirectional Long Short-Term Memory (Bi-LSTM). Dataset yang digunakan untuk mengembangkan POS tagger adalah sebuah dependency treebank bahasa Indonesia yang terdiri dari 1.000 kalimat dan 19.401 token. Hasil eksperimen dengan menggunakan Polyglot sebagai pembanding menunjukkan bahwa POS tagger yang dikembangkan lebih baik dengan tingkat akurasi POS tagging yang meningkat sebesar 6,69% dari 84,82% menjadi 91,51%. ......There have been many studies that have developed Part-of-Speech tagger (POS tagger) for Indonesian language. Unfortunately, so far only Polyglot that has used POS tag according to Universal Dependencies (UD) annotation guidelines. However, Polyglot itself still has shortcomings since it has not been able to overcome clitics and reduplicated words in Indonesian language. The purpose of this study is to develop POS tagger for Indonesian language which is not only in accordance with UD annotation guidelines, but also has overcome Polyglot’s shortcomings. This POS tagger will be developed under deep learning method by using modified version of Recurrent Neural Network (RNN) architecture, Bidirectional Long Short-Term Memory (Bi-LSTM). The dataset used to develop POS tagger is an Indonesian dependency treebank consisting of 1.000 sentences and 19.401 tokens. Result of experiment using Polyglot as baseline shows that the developed POS tagger is better. This is indicated by increased accuracy POS tagging by 6,69% from 84,82% to 91,51%.
Depok: Fakultas Ilmu Kompter Universitas Indonesia, 2020
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Nurjannah Cintya Adiningsih
Abstrak :
Skripsi ini membahas tentang Sistem penilaian esai Otomatis (SIMPLE-O) untuk ujian Bahasa Jepang dengan Bidirectional LSTM dan Manhattan Distance. Dalam penggunaan Algoritma RNN menggunakan arsitektur Bidirectional LSTM. SIMPLE-O merupakan sistem yang sedang dikembangkan oleh Departemen Teknik Elektro UI yang digunakan untk menilai esai secara otomatis. Sistem berjalan menggunakan model Bidirectional LSTM, diukur dengan Manhattan Distance serta terdapat metric evaluasi yang terdiri dari Accuracy, Recall, Precision, F1-Measure. Dalam pengolahan sistem dilakukan secara otomatis menggunakan tensorflow. Pengujian yang dilakukan pada sistem yang dibangun terdapat 3 pengujian yaitu : pengujian terhadap epoch, optimizer dan word2vec. Untuk epoch dilakukan terhadap 3 epoch yaitu 20, 5 dan 10. Dari masing – masing epoch dijalankan sebanyak 5 kali. Hasil tertinggi yang didapatkan pada epoch ada pada epoch 20 yaitu 99.02%, untuk hasil pengujian optimizer menggunkan SGD atau stochastic gradient descent dan word2vec sebesar 500. ......This thesis discusses the Automatic essay scoring system (SIMPLE-O) for Japanese language exams with Bidirectional LSTM and Manhattan Distance. In the use of the RNN Algorithm, the Bidirectional LSTM architecture is used. SIMPLE-O is a system being developed by the Department of Electrical Engineering UI which is used to automatically assess essays. The system runs using the Bi-LSTM model, measured by Manhattan Distance and there is an evaluation metric consisting of Accuracy, Recall, Precision, F1-Measure. In the system processing is done automatically using tensorflow. Tests carried out on the system built have 3 tests, namely: testing the epoch, optimizer and word2vec. For epoch, it is done for 3 epochs, namely 20, 5 and 10. From each epoch, it is run 5 times. The highest result obtained on epoch is at epoch 20, which is 99.02%, for the optimizer test results using SGD or stochastic gradient descent and word2vec of 500.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library