Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Hario Gibran
Abstrak :
Konsumsi bahan bakar minyak yang semakin meninggi setiap harinya membuat permasalahan lain bermunculan seperti emisi yang semakin tinggi dan juga ketersediaan bahan bakar minyak yang tidak dapat bertahan selamanya. Oleh karena itu, pemerintah mengeluarkan Permen ESDM No.12/2015 mengenai pemanfaatan bioetanol (E100) sebagai campuran BBM diproyeksikan akan mencapai 5% pada tahun 2020 dan 20% pada tahun 2025 khususnya pada bidang transportasi. Namun dalam pelaksanaannya rencana tersebut terhambat karena terkendala ongkos produksi yang masih tinggi, dan menjadikan etanol kurang kompetitif sebagai bahan bakar alternatif. Salah satu inisiatif yang saat ini sedang dikembangkan untuk mengatasi tantangan tersebut, adalah dengan melakukan pencampuran methanol dan ethanol dengan bahan bakar gasoline. Tujuan dari penilitian ini adalah memahami karakteristik bahan bakar campuran bensin-etanol-metanol dengan target RON 92, memahami perbandingan unjuk kerja dan emisi pada mesin 150cc SI 4 stroke yang menggunakan bahan bakar campuran bensin-etanol-metanol target RON 92 dengan produk RON 92, dan memahami interelasi antara pengujian karakteristik campuran bahan bakar dengan perhitungan karakteristik campuran bahan bakar. Penambahan metanol dan etanol ke dalam base bensin RON 89 dilakukan agar target RON 92 dapat dicapai. Komposisi dari campuran akan dihitung menggunakan persamaan Linear Molar Calculation (LMC). Pengujian yang dilakukan dalam penelitian diantaranya uji karakterisasi, unjuk kerja, dan emisi. Pengujian dilakukan sesuai dengan standarnya masing-masing, diantaranya uji densitas menggunakan ASTM D4052, uji Research Octane Number (RON) menggunakan ASTM D2699, uji distilasi dengan ASTM D86, uji Reid Vapor Pressure (RVP) menggunakan ASTM D5191, uji torsi dan daya menggunakan SAE J1349, uji konsumsi menggunakan SNI 7554, dan uji emisi menggunakan SNI 19-7118.1. Berdasarkan hasil pengujian, semua nilai densitas sampel bahan bakar campuran mengalami kenaikan dari base bensin. Kenaikan nilai densitas tertinggi terjadi pada sampel 3 sebesar 0,45%. Didapatkan Mean Absolute Percentage Error (MAPE) dari perhitungan nilai densitas dengan pengujian secara keseluruhan sebesar 0,04%. Pada pengujian RON, semua RON sampel bahan bakar campuran mengalami kenaikan dari base bensin. Kenaikan terbesar didapatkan pada sampel 3 sebesar 2,81%. Didapatkan MAPE dari perhitungan nilai RON dengan pengujian secara keseluruhan sebesar 0,29%. Pada pengujian distilasi, didapatkan semua kurva distilasi sampel bahan bakar campuran berada di bawah kurva distilasi base bensin. Pada pengujian RVP, semua RVP sampel bahan bakar campuran mengalami kenaikan dari base bensin. Kenaikan terbesar didapatkan pada sampel 1 sebesar 21,03%. Pada pengujian torsi dan daya, nilai torsi maksimum dan daya maksimum dari semua sampel bahan bakar campuran mengalami kenaikan jika dibandingkan dengan bahan bakar produk. Kenaikan nilai torsi maksimum dan daya maksimum tertinggi didapat menggunakan sampel 1 sebesar 0,91% dan 1,60%. Pada pengujian konsumsi bahan bakar campuran dibandingkan dengan bahan bakar produk, pada variasi 90km/jam, 120km/jam, dan siklus urban driving didapat kenaikan tertinggi menggunakan sampel 2 sebesar 3,79%; 6,05%; dan 17,83%. Pada pengujian emisi bahan bakar campuran dibandingkan dengan bahan bakar produk. Emisi karbon dioksida mengalami peningkatan terbesar saat menggunakan sampel 2 sebesar 24,74%. Emisi karbon monoksida mengalami penurunan terbesar saat menggunakan sampel 3 sebesar 32,19%. Emisi hidrokarbon mengalami penurunan terbesat saat menggunakan sampel 3 sebesar 29,60%. ......Fuel consumption is increasing every day, making other problems arise, such as higher emissions and the availability of fuel oil that can not last forever. Therefore, the government issued Permen ESDM no.12/2015 regarding the utilization of bioethanol as a fuel mixture is projected to reach 5% in 2020 and 20% in 2025, especially in the transportation sector. However, the plan's implementation was hampered due to the constraints of high production costs, which made ethanol less competitive as an alternative fuel. One of the initiatives currently being developed is to mix methanol and ethanol with gasoline. The purpose of this research is to understand the characteristics of gasoline-ethanol-methanol mixture with RON 92 target, the comparison of performance and emissions in 150cc 4 stroke engine that uses gasoline-ethanol-methanol mixture RON 92 target with RON 92 product, and the interrelation between experiments and calculations on the characteristics of the fuel mixture. Adding methanol and ethanol into the base gasoline RON 89 is done so that the target RON 92 can be achieved. The composition of the mixture will be calculated using the Linear molar Calculation (LMC) equation. Tests conducted in the study include characterization, performance, and emissions tests. Tests were conducted under their respective standards, including density using ASTM D4052, Research Octane Number (RON) using ASTM D2699, distillation with ASTM D86, Reid Vapor Pressure (RVP) using ASTM D5191, torque and power using SAE J1349, consumption using SNI 7554, and emission using SNI 19-7118.1. Based on the test results, all the density values of mixed fuel increased from the base gasoline. The highest density increase occurred in sample 3 by 0.45%. Mean Absolute Percentage Error (MAPE) of the density value obtained from the calculation with the comprehensive test is 0.04%. All mixed fuels’ RON value increased from the base gasoline in RON testing. The most significant increase was obtained in sample 3 by 2.81%. MAPE of the value of RON obtained from the calculation with the comprehensive test is 0.29%. In distillation test, all distillation curve of the mixed fuel is obtained below the distillation curve of base gasoline. In RVP testing, all mixed fuels’ RVP values increased from the base gasoline. The most significant increase was obtained using sample 1 at 21.03%. In torque and power testing, the maximum torque and maximum power values of all mixed fuels increased when compared to product fuel. The increase in the maximum torque value and the highest maximum power is obtained using sample 1 at 0.91% and 1.60%. In the fuel consumption test, all mixed fuels will be compared with product fuel, with the variation of 90km/h, 120km/h, and the urban driving cycle obtained the highest increase using sample 2 at 3.79%; 6.05%; and 17.83%. The emissions test will compare all mixed fuels with fuel products. Carbon dioxide emissions increased the most when using sample 2 by 24.74%. Carbon monoxide emissions decreased the most when using sample 3 by 32.19%. Hydrocarbon emissions decreased the fastest when using sample 3 by 29.60%.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hario Gibran
Abstrak :
Konsumsi bahan bakar minyak yang semakin meninggi setiap harinya membuat permasalahan lain bermunculan seperti emisi yang semakin tinggi dan juga ketersediaan bahan bakar minyak yang tidak dapat bertahan selamanya. Oleh karena itu, pemerintah mengeluarkan Permen ESDM No.12/2015 mengenai pemanfaatan bioetanol (E100) sebagai campuran BBM diproyeksikan akan mencapai 5% pada tahun 2020 dan 20% pada tahun 2025 khususnya pada bidang transportasi. Namun dalam pelaksanaannya rencana tersebut terhambat karena terkendala ongkos produksi yang masih tinggi, dan menjadikan etanol kurang kompetitif sebagai bahan bakar alternatif. Salah satu inisiatif yang saat ini sedang dikembangkan untuk mengatasi tantangan tersebut, adalah dengan melakukan pencampuran methanol dan ethanol dengan bahan bakar gasoline. Tujuan dari penilitian ini adalah memahami karakteristik bahan bakar campuran bensin-etanol-metanol dengan target RON 92, memahami perbandingan unjuk kerja dan emisi pada mesin 150cc SI 4 stroke yang menggunakan bahan bakar campuran bensin-etanol-metanol target RON 92 dengan produk RON 92, dan memahami interelasi antara pengujian karakteristik campuran bahan bakar dengan perhitungan karakteristik campuran bahan bakar. Penambahan metanol dan etanol ke dalam base bensin RON 89 dilakukan agar target RON 92 dapat dicapai. Komposisi dari campuran akan dihitung menggunakan persamaan Linear Molar Calculation (LMC). Pengujian yang dilakukan dalam penelitian diantaranya uji karakterisasi, unjuk kerja, dan emisi. Pengujian dilakukan sesuai dengan standarnya masing-masing, diantaranya uji densitas menggunakan ASTM D4052, uji Research Octane Number (RON) menggunakan ASTM D2699, uji distilasi dengan ASTM D86, uji Reid Vapor Pressure (RVP) menggunakan ASTM D5191, uji torsi dan daya menggunakan SAE J1349, uji konsumsi menggunakan SNI 7554, dan uji emisi menggunakan SNI 19-7118.1. Berdasarkan hasil pengujian, semua nilai densitas sampel bahan bakar campuran mengalami kenaikan dari base bensin. Kenaikan nilai densitas tertinggi terjadi pada sampel 3 sebesar 0,45%. Didapatkan Mean Absolute Percentage Error (MAPE) dari perhitungan nilai densitas dengan pengujian secara keseluruhan sebesar 0,04%. Pada pengujian RON, semua RON sampel bahan bakar campuran mengalami kenaikan dari base bensin. Kenaikan terbesar didapatkan pada sampel 3 sebesar 2,81%. Didapatkan MAPE dari perhitungan nilai RON dengan pengujian secara keseluruhan sebesar 0,29%. Pada pengujian distilasi, didapatkan semua kurva distilasi sampel bahan bakar campuran berada di bawah kurva distilasi base bensin. Pada pengujian RVP, semua RVP sampel bahan bakar campuran mengalami kenaikan dari base bensin. Kenaikan terbesar didapatkan pada sampel 1 sebesar 21,03%. Pada pengujian torsi dan daya, nilai torsi maksimum dan daya maksimum dari semua sampel bahan bakar campuran mengalami kenaikan jika dibandingkan dengan bahan bakar produk. Kenaikan nilai torsi maksimum dan daya maksimum tertinggi didapat menggunakan sampel 1 sebesar 0,91% dan 1,60%. Pada pengujian konsumsi bahan bakar campuran dibandingkan dengan bahan bakar produk, pada variasi 90km/jam, 120km/jam, dan siklus urban driving didapat kenaikan tertinggi menggunakan sampel 2 sebesar 3,79%; 6,05%; dan 17,83%. Pada pengujian emisi bahan bakar campuran dibandingkan dengan bahan bakar produk. Emisi karbon dioksida mengalami peningkatan terbesar saat menggunakan sampel 2 sebesar 24,74%. Emisi karbon monoksida mengalami penurunan terbesar saat menggunakan sampel 3 sebesar 32,19%. Emisi hidrokarbon mengalami penurunan terbesat saat menggunakan sampel 3 sebesar 29,60%. ......Fuel consumption is increasing every day, making other problems arise, such as higher emissions and the availability of fuel oil that can not last forever. Therefore, the government issued Permen ESDM no.12/2015 regarding the utilization of bioethanol as a fuel mixture is projected to reach 5% in 2020 and 20% in 2025, especially in the transportation sector. However, the plan's implementation was hampered due to the constraints of high production costs, which made ethanol less competitive as an alternative fuel. One of the initiatives currently being developed is to mix methanol and ethanol with gasoline. The purpose of this research is to understand the characteristics of gasoline-ethanol-methanol mixture with RON 92 target, the comparison of performance and emissions in 150cc 4 stroke engine that uses gasoline-ethanol-methanol mixture RON 92 target with RON 92 product, and the interrelation between experiments and calculations on the characteristics of the fuel mixture. Adding methanol and ethanol into the base gasoline RON 89 is done so that the target RON 92 can be achieved. The composition of the mixture will be calculated using the Linear molar Calculation (LMC) equation. Tests conducted in the study include characterization, performance, and emissions tests. Tests were conducted under their respective standards, including density using ASTM D4052, Research Octane Number (RON) using ASTM D2699, distillation with ASTM D86, Reid Vapor Pressure (RVP) using ASTM D5191, torque and power using SAE J1349, consumption using SNI 7554, and emission using SNI 19-7118.1. Based on the test results, all the density values of mixed fuel increased from the base gasoline. The highest density increase occurred in sample 3 by 0.45%. Mean Absolute Percentage Error (MAPE) of the density value obtained from the calculation with the comprehensive test is 0.04%. All mixed fuels’ RON value increased from the base gasoline in RON testing. The most significant increase was obtained in sample 3 by 2.81%. MAPE of the value of RON obtained from the calculation with the comprehensive test is 0.29%. In distillation test, all distillation curve of the mixed fuel is obtained below the distillation curve of base gasoline. In RVP testing, all mixed fuels’ RVP values increased from the base gasoline. The most significant increase was obtained using sample 1 at 21.03%. In torque and power testing, the maximum torque and maximum power values of all mixed fuels increased when compared to product fuel. The increase in the maximum torque value and the highest maximum power is obtained using sample 1 at 0.91% and 1.60%. In the fuel consumption test, all mixed fuels will be compared with product fuel, with the variation of 90km/h, 120km/h, and the urban driving cycle obtained the highest increase using sample 2 at 3.79%; 6.05%; and 17.83%. The emissions test will compare all mixed fuels with fuel products. Carbon dioxide emissions increased the most when using sample 2 by 24.74%. Carbon monoxide emissions decreased the most when using sample 3 by 32.19%. Hydrocarbon emissions decreased the fastest when using sample 3 by 29.60%.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zaim Kamil Muhammad
Abstrak :
Pemerintah Indonesia mengeluarkan peraturan penggunaan etanol sebagai bahan bakar lain dengan proyeksi mencapai 20% pada tahun 2025 pada transportasi. Tetapi dalam pelaksanaannya terkendala oleh ongkos produksi etanol yang tinggi dan pasokan bahan baku yang terbatas di pasar domestik. Kehadiran metanol menjadi salah satu solusi dari masalah tersebut. Manufaktur mesin pembakaran dalam modern memiliki tren menuju mesin yang memiliki efisiensi tinggi dan ramah. Hal ini membuat kebutuhan Research Octane Number (RON) yang semakin tinggi. Nilai RON bensin tertinggi di Indonesia adalah bensin RON 98. Penelitian ini akan mencari efek penambahan metanol dan etanol terhadap bensin RON 89 pada karakterisasi. Berikutnya, penelitian ini akan memberikan perbandingan antara sampel campuran bahan bakar bensin-etanol-metanol dengan produk bensin RON 98 pada unjuk kerja dan emisi. Selain itu, penelitian ini akan memberikan interelasi antara pengujian dan perhitungan pada karakteristik campuran bahan bakar. Pencampuran bensin RON 89 dengan high purity methanol dan fuel grade ethanol digunakan untuk mencapai target RON 98. Komposisi campuran tersebut akan dihitung dengan persamaan Linear Molar Calculation (LMC). Sampel campuran bahan bakar bensin-etanol-metanol akan diuji meliputi karakterisasi, unjuk kerja, dan emisi. Karakterisasi yang digunakan meliputi densitas (ASTM D4052), bilangan oktana riset (ASTM D2699), distilasi (ASTM D86), reid vapour pressure (ASTM D5191). Setelahnya, sampel akan dilanjuti dengan pengujian unjuk kerja dan emisi menggunakan sepeda motor SI 4 stroke 150cc. Pengujian unjuk kerja meliputi torsi (SAE J1349), daya (SAE J1349), dan konsumsi (SNI 7554), sedangkan pengujian emisi meliputi emisi CO2, CO, dan HC dengan menggunakan standar SNI 19-7118.1. Pengujian daya dan torsi dilakukan pada putaran mesin 4000-10000 dengan kenaikan 1000. Berdasarkan hasil penelitian, Sampel bahan bakar campuran bensin-etanol-metanol dapat meningkatkan nilai karakteristik bensin RON 89, mulai dari densitas dengan peningkatan terbesar terjadi pada sampel 5 dengan nilai peningkatan 1,52%, bilangan oktana riset dengan peningkatan terbesar terjadi pada sampel 5 dengan nilai peningkatan 10,57%, dan reid vapor pressure dengan peningkatan terbesar terjadi pada sampel 1 dengan nilai peningkatan 29,75%. Sedangkan pada distilasi, bahan bakar campuran tersebut membuat turun kurva distilasi dari bensin RON 89. Pengujian sampel pada parameter torsi dan daya mengalami peningkatan sebesar 2,13% pada sampel 1 dan 2 dengan putaran mesin 8000 RPM dan 2,84% pada sampel 2 dengan putaran mesin 9000 RPM. Sedangkan pengujian konsumsi jika dibandingkan antara sampel dengan produk, pada variasi kecepatan 90 km/jam terjadi penambahan terkecil dengan angka 6,85% pada sampel 2, pada variasi kecepatan 120 km/jam terjadi reduksi terbesar dengan nilai 3,5% pada sampel 2, dan pada variasi urban sampel 1 memiliki nilai yang sama. Selanjutnya, pengujian emisi jika dibandingkan antara sampel dengan produk, emisi CO2 terjadi peningkatan terkecil pada sampel 3 dengan nilai 9,18%, emisi CO terjadi reduksi terbesar pada sampel 1 dengan nilai 15,67%, emisi HC terjadi reduksi terbesar pada sampel 1 dengan nilai 37,84%. Secara keseluruhan, nilai perhitungan dan pengujian pada densitas dan bilangan oktana riset memiliki nilai Mean Absolute Percentage Error (MAPE) sebesar 0,07% dan 0,85%. ......The Indonesian government issued a regulation on ethanol as another fuel with a projected reach of 20% by 2025 in transportation. However, its implementation is constrained by the high cost of ethanol production and the limited supply of raw materials in the domestic market. The presence of methanol is one solution to this problem. Modern internal combustion engine manufacturing has a trend towards high efficiency and low emissions. This makes the need for a higher Research Octane Number (RON). The highest RON value for gasoline in Indonesia is RON 98 gasoline. This study will look for the effect of adding methanol and ethanol to gasoline RON 89 on characterization. Next, this study will compare a sample of gasoline-ethanol-methanol fuel mixture with RON 98 gasoline products on performance and emissions. In addition, this study will provide an interrelation between experiments and calculations on the characteristics of the fuel mixture. Mixing RON 89 gasoline with high purity methanol and fuel-grade ethanol is used to achieve the RON 98 target. The composition of the mixture will be calculated using the Linear Molar Calculation (LMC) equation. Samples of gasoline-ethanol-methanol fuel mixture will be tested, including characterization, performance, and emissions. The characterizations used include density(ASTM D4052), RON(ASTM D2699), distillation(ASTM D86), reid vapor pressure(ASTM D5191). After that, the sample will be continued with performance and emission testing using a 150cc SI 4-stroke motorcycle. Performance tests include torque(SAE J1349), power(SAE J1349), and consumption(SNI 7554), while emission tests include CO2, CO, and HC emissions using the SNI 19-7118.1 standard. Testing of power and torque at 4000-10000 engine speed with 1000 increments. Based on the results of the study, the gasoline-ethanol-methanol mixture can increase the characteristic value of RON 89 gasoline, starting from the density with the largest increase occurring in sample 5 with value 1.52%, the RON with the largest increase occurring in sample 5 with value 10.57%, and the reid vapor pressure with the largest increase occurs in sample 1 with value 29.75%. While in distillation, the mixed fuel makes the distillation curve down from RON 89 gasoline. Sample testing on torque and power parameters increased by 2.13% in samples 1 and 2 with 8000 RPM and 2.84% in sample 2 with 9000 RPM. While the consumption test when compared between samples and products, at a speed variation of 90 km/hour, the smallest addition occurred with 6.85% in sample 2, at a speed variation of 120 km/hour, the largest reduction occurred with a value of 3.5% in sample 2, and in the urban variation sample 1 has the same value. Furthermore, in the emission test when compared between samples and products, CO2 emissions experienced the smallest increase in sample 3 with a value of 9.18%, CO emissions experienced the largest reduction in sample 1 with a value of 15.67%, HC emissions experienced the largest reduction in sample 1 with value 37.84%. Overall, the calculated and tested values for the research density and octane number have Mean Absolute Percentage Error (MAPE) values of 0.07% and 0.85%, respectively.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library