Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 173 dokumen yang sesuai dengan query
cover
Abstrak :
Kebutuhan bahan bakar yang tak dapal diperbaharui (fosil) di Indonesia, dari tahun ke tahun cenderung meningkat. Di perkirakan pada tahun 2004, Indonesia akan mcnjadi negara pengimpor minyak mentah. Induslri perkebunan kelapa sawil di Indonesia rnerupakan salah satu industri yang terbesar ke dua di dunia setelah Malaysia. Dengan menggunakan pemilihan bibit unggul dan ekstensifikasi lahan perkebunan, diperkirakan pada tahun 2010, Indonesia akan menjadi negara penghasil terbesar kelapa sawit. Dengan kondisi ini. limbah yang dihasilkan dari industri _i uga diperkirakan akan menjadi masalah yang cukup besar. Limbah industri perkebunan kelapa sawit antara lain yailu daun, pelepah, cangkang atau tcmpurung, fiber atau scral dan tandan kosong sawit.

Untuk mendapatkan bio-oil yaitu mclalui proses pirolisis cepal dari pclepah kelapa sawil, dcngan temperatur sekitar 400“ - 650° C. Produk uap yang dihasilkan kc-:mudian dikondensasi pada suhu sekitar 16° C. dengan menggunakan es balu sebanyak 6 kg atau dry ice scbanyak 4 kg. Produk cair yang, didapat kemudian dibandingkan hasilnya dengan bio-oil dari umpan kayu pinus dan bahan bakar diesel.

Perbandingan karakteristik dari bio-oil dengan umpan pelepah kelapa sawit, bio-oil dengan umpan kayu pinus dan bahan bakar solar, adalah : 0 Viskositas = 2,592 CSI ; 7 cSt ; dan 4 cSt. ¢ Densitas = 1,0847 g/ml, ; 1,2 gfmL ; dan 0,85 gf'mL. » pH=2,17 ; 2,5 ; dan5. 0 Nilai kalor = 6,910 MJfkg ; 16,5 Mlfkg ; dan 42,3 MJ/kg. Kemudian untuk gugus fuftgsi kimia penyusunnya sama dengan gugus fungsi dari bio-oil umpan kayu pinus.
Fakultas Teknik Universitas Indonesia, 2004
S49432
UI - Skripsi Membership  Universitas Indonesia Library
cover
Patricia Lukas Goentoro
Abstrak :
Protein Non Struktural-1 (NS-1) dari virus dengue terbukti menjadi penanda untuk diagnosis awal infeksi dengue. Bio-Rad NS1 Ag adalah salah satu alat diagnostikdi Indonesia yang menggunakan NS1.Tujuan dari penelitian ini adalah untuk mengukur sensitivitas dan spesifisitas kit pada virus dengue serotype-2 (DENV-2), virus dengue serotype-4 (DENV-4) dan infeksi campuran Uji diagnostik dilakukan selama36 bulan (Maret2010 ?Februari 2013). Sebanyak 102 pasien dengan demam kurang dari 48 jam memenuhi kriteria inklusi dalam studi ini. Reverse Transcripion-Polymerase Chain Reaction (RT-PCR) atau isolasi virus di cell line C6/36 atau kenaikan titer antibody dijadikan sebagai standar baku penentu infeksi dengue. RT-PCR juga digunakan untuk menentukan serotipe virus. Analisis statistik dilakukan dengan menggunakan SPSS versi 17.0. Variabel data binomial disajikan dalam interval kepercayaan 95%. Sensitivitas dan spesifisitas kit diagnostik disajikan dalam tabel 2x2 dan area di bawah kurva (AUC) dari Receiver Operating Characteristics Curve. Dari 102 pasien secara berurutan didapatkan DENV-1, DENV-2, DENV-3 dan DENV-4, adalah 17 (16.7%), 21 (20.5%), 16 (15.7%) dan 4 (3.9%). Pada penelitian ini juga ditemukan infeksi campuran yaitu campuran (i)DENV-1 dan DENV-2, (ii)DENV- 1 dan DENV-3, (iii)DENV-1 dan DENV-4, (iv)DENV-1, DENV-3, dan DENV-4, (v)DENV-2 dan DENV-4 dan (vi)serotipe yang tidak diketahui secara berurutan adalah 2 (2.0%), 3 (2.9%), 1 (1.0%), 1 (1.0%), 1 (1.0%), dan 2 (2.0%). Sensitivitas dan spesifisitas masing Bio-Rad NS1 Ag Strip untuk mendeteksi infeksi DENV-2 adalah 76,2% dan 100% (95% CI, 76.8% to 99.3%). Sementara itu, sensitivitas dan spesifisitas strip untuk mendeteksi infeksi DENV-4 adalah 50% dan 100% (95% CI, 50% to 100%). Sensitivitas dan spesifisitas Bio-Rad NS1 Ag Strip pada infeksi campuran adalah 100% (95% CI, 95% to 100%). Bio- Rad NS1 Ag memiliki sensitivitas tinggi dan spesifisitas untuk menentukan infeksi akut DENV-2 dan infeksi campuran. Namun, Bio-Rad NS1 Ag memiliki sensitivitas yang terbatas, namun spesifisitas tinggi untuk diagnosis infeksi akut DENV-4.;Non Structural-1 (NS1) protein of dengue virus is proven to be a marker for early diagnosis of dengue infection. Bio-Rad NS1 Ag Strip is one of the available diagnostic kit in Indonesia that comprised of NS1. The aim of this study was to measure the sensitivity and specificity of the kit within DENV-2, DENV-4and mixed dengue virus serotypes. This study was done in 36 months (March 2010- February 2013). There were 102 dengue suspected patients with fever less than 48 hours was fulfilling inclusion criteria. Reverse Transcription- Polymerase Chain Reaction (RT-PCR) or virus isolation in C6/36 cell line or increase titer antibody by ELISA was used as gold standard. RT-PCR was also used to determine serotype of the dengue virus. SPSS version 17.0 was the main statistical tool that we used. Data binominal variables was presented as incidence rates with 95% confidence intervals. Sensitivity and specificity of diagnostic kit was presented in 2x2 tablesand area under the curve (AUC) of the Receiver Operating Characteristics Curve. From 102 patients, 68 (68.3%) patients were confirmed positive dengue infection. Within confirmed dengue infection patients by RT-PCR we found DENV-1, DENV-2, DENV-3,DENV-4 17 (16.7%), 21 (20.5%), 16 (15.7%), 4 (3.9%), respectively. It was also found some mixed infection cases, which were (i)DENV-1 and DENV-2, (ii)DENV-1 and DENV-3, (iii)DENV-1 and DENV-4, (iv)DENV-1, DENV-3 and DENV-4, (v)DENV-2 and DENV-4 and (vi)unknown were of 2 (2.0%), 3 (2.9%), 1 (1.0%), 1 (1.0%), 1 (1.0%) and 2 (2.0%), respectively. The sensitivity and specificity of Bio-Rad NS1 Ag Strip for DENV-2 sera collected were 76.2% and 100% (95% CI, 76.8% to 99.3%), respectively. The sensitivity and specificity of Bio-Rad NS1 Ag Strip for DENV-4 were 50% and 100% (95% CI, 50% to 100%), respectively. The sensitivity and specificity of Bio-Rad NS1 Ag Strip for mixed infection were both 100% (95% CI, 95% to 100%). Bio-Rad NS1 Ag Strip has high sensitivity and specificity to determine DENV-2 and mixed infection. On the other hand, Bio-Rad NS1 Ag Strip has limited sensitivity, but high specificity for diagnosis of DENV-4 acute infection;Non Structural-1 (NS1) protein of dengue virus is proven to be a marker for early diagnosis of dengue infection. Bio-Rad NS1 Ag Strip is one of the available diagnostic kit in Indonesia that comprised of NS1. The aim of this study was to measure the sensitivity and specificity of the kit within DENV-2, DENV-4and mixed dengue virus serotypes. This study was done in 36 months (March 2010- February 2013). There were 102 dengue suspected patients with fever less than 48 hours was fulfilling inclusion criteria. Reverse Transcription- Polymerase Chain Reaction (RT-PCR) or virus isolation in C6/36 cell line or increase titer antibody by ELISA was used as gold standard. RT-PCR was also used to determine serotype of the dengue virus. SPSS version 17.0 was the main statistical tool that we used. Data binominal variables was presented as incidence rates with 95% confidence intervals. Sensitivity and specificity of diagnostic kit was presented in 2x2 tablesand area under the curve (AUC) of the Receiver Operating Characteristics Curve. From 102 patients, 68 (68.3%) patients were confirmed positive dengue infection. Within confirmed dengue infection patients by RT-PCR we found DENV-1, DENV-2, DENV-3,DENV-4 17 (16.7%), 21 (20.5%), 16 (15.7%), 4 (3.9%), respectively. It was also found some mixed infection cases, which were (i)DENV-1 and DENV-2, (ii)DENV-1 and DENV-3, (iii)DENV-1 and DENV-4, (iv)DENV-1, DENV-3 and DENV-4, (v)DENV-2 and DENV-4 and (vi)unknown were of 2 (2.0%), 3 (2.9%), 1 (1.0%), 1 (1.0%), 1 (1.0%) and 2 (2.0%), respectively. The sensitivity and specificity of Bio-Rad NS1 Ag Strip for DENV-2 sera collected were 76.2% and 100% (95% CI, 76.8% to 99.3%), respectively. The sensitivity and specificity of Bio-Rad NS1 Ag Strip for DENV-4 were 50% and 100% (95% CI, 50% to 100%), respectively. The sensitivity and specificity of Bio-Rad NS1 Ag Strip for mixed infection were both 100% (95% CI, 95% to 100%). Bio-Rad NS1 Ag Strip has high sensitivity and specificity to determine DENV-2 and mixed infection. On the other hand, Bio-Rad NS1 Ag Strip has limited sensitivity, but high specificity for diagnosis of DENV-4 acute infection
Fakultas Kedokteran Universitas Indonesia, 2013
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Haisa Yuana
Abstrak :
Pengembangan terhadap pemanfaat biomassa sebagai sumber bahan bakar alternatif harus dilakukan, mengingat bio-oil yang dihasilkan dari pirolisis biomassa masih mengandung kadar senyawa oksigenat yang tinggi, yang menyebabkan bio-oil bersifat korosif, memiliki nilai kalor rendah, viskositas yang tinggi dan kurang stabil. Penggunaan limbah plastik sebagai bahan baku tambahan menjadi salah satu metode alternatif yang dapat menaikkan nilai kalor bio-oil, menurunkan sifat korosivitas, menurunkan viskositas dan meningkatkan kestabilannya. Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan limbah plastik dalam meningkatkan kualitas bio-oil yang dihasilkan dari pirolisis batang jagung sehingga dapat menghasilkan bio-oil yang mempunyai kadar senyawa oksigenat yang rendah dan dapat digunakan sebagai biofuel. Metode yang digunakan dalam penelitian ini adalah slow co-pyrolysis, dengan jenis reaktor fixed bed. Bahan baku yang digunakan adalah batang jagung dan limbah plastik HDPE dan PP. Slow co-pyrolysis dilakukan dengan temperatur akhir 5000C, laju pemanasan 50C/menit, laju N2 sebesar 750 ml/menit, dan waktu penahan 30 menit. Karakterisasi dilakuakn hanya terhadap fraksi minyak (bio-oil) yang mencakup analisis Gas Cromatrograph Mass Spectrometer (GC-MS), uji viskositas dan uji pH. Dengan penambahan plastik sebanyak 75%berat, kandungan senyawa non-oksigenat pada bio-oil mencapai 47,17 % sedangkan kandungan senyawa oksigenat 52,83%. Penggunaan plastik HDPE menghasilkan yield bio-oil yang lebih tinggi yaitu mencapai 28,05 %berat, dibandingkan dengan plastik PP yang mencapai 25,85 %berat. Penambahan limbah plastik menghasilkan bio-oil dengan pH 5 dan viskositas 4,2 cSt yang menyebabkan bio-oil menjdai tidak korosif dan lebih mudah menglair sehingga dapat dimanfaatkan lebih lanjut sebagai bahan bakar. ......The development of biomass utilization for alternative fuel source needs to be done, considering the bio-oil produced from biomass pyrolysis still containts high level of oxygenate compounds, which causes the bio-oil to be corrosive, has a low heating value, and less stable. The use of plastic waste for bio-oil production is one of the alternative methods that can increase the heating value of bio-oil by reducing the oxygenates compounds on it. This study aims to determine the effect of using plastic waste to improve the quality of bio-oil from corn cob, so that it has a lower oxygenate compounds. The method used in this study is slow co-pyrolysis, using fixed bed reactor. The raw materials are corn cob and HDPE and PP plastic wastes. Slow co-pyrolysis is done with final temperatur of 5000C, heating rate 50C/min, N2 flow rate 750 ml/min, and pirolysis time 30 minutes. The bio-oil oil produced will be characterized using Gas Chromatpgraph Mass Spectometer (GC-MS), viscosity, and pH. With the addition of 75 %wt plastics, non-oxygenates compound in bio-oil reach 47,17 while the oxygenates compound are reduced to 52,33 %wt. The addition of HDPE plastic waste produces hihger bio-oil yield (28,05 %wt) than PP plastic waste (25,85 %wt). The bio-oil produced from biomass and plastic wastes become less corrosive ( pH 5) and viscos (4,2 cSt), so that it can be use as alternative fuel source.
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59086
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diyas Prawara Mahdi
Abstrak :
Mulai munculnya suatu dorongan yang makin meningkat untuk merubah ketergantungan terhadap produk bahan bakar fosil untuk kebutuhan energi dunia. Hal ini diakibatkan oleh mulai habisnya sumber bahan bakar fosil untuk di masa yang akan datang serta dampak negatifnya terhadap lingkungan terkait dengan eksploitasi bahan bakar fosil serta kaitannya dengan emisi gas rumah kaca dan perubahan iklim seperti misalnya pada proses pembakaran bahan bakar fosil untuk pembangkit listrik menyumbangkan lebih dari 29% emisi CO2 dunia pada tahun 2004. Biomassa telah mendapat perhatian lebih sebagai sumber alternatif yang layak dikarenakan tersedia berlimpah di seluruh dunia serta dianggap sebagai sumber nol CO2. Biomassa merupakan suatu sumber daya yang banyak tersedia, bersifat terbarukan, harga yang relatif murah bahkan ada yang gratis, serta dapat digunakan secara luas. Proses pirolisis merupakan tahap awal dari proses pembakaran serta gasifikasi. Proses ini bukan hanya merupakan teknologi transformasi yang bersifat independen, namun juga merupakan bagian dari proses gasifikasi dan pembakaran yang terdiri dari proses penguraian bahan bakar padat menjadi cair dan termal tanpa ada zat pengoksidasi. Keuntungan yang paling penting dari proses pirolisis adalah dapat diatur untuk mendapatkan hasil yang diinginkan. Misalkan dibutuhkan proses pirolisis lambat untuk meningkatkan hasil dari biochar, sedangkan proses pirolisis cepat untuk meningkatkan hasil dari bio-oil. Nilai kohe yang dibutuhkan pada reaktor pirolisis MRPP untuk mendapatkan bio-syngas paling optimal yaitu 886.88 gram untuk dapat menghasilkan persentase produk hasil pirolisis berupa bio-syngas paling banyak sebesar 75.01%. Perbedaan simulasi menggunakan Python terhadap data saat pengambilan data menggunakan reaktor pirolisis MRPP yaitu selisih 33,33 gram dengan rincian hasil dari pengambilan data yaitu sebanyak 750 gram. Efisiensi konsumsi bahan bakar untuk mengoperasikan alat reaktor MRPP yaitu 225g/jam. ......There is a growing push to change dependence on fossil fuel products for the world's energy needs. This is caused by the depletion of fossil fuel sources for the future and the negative impact on the environment related to the exploitation of fossil fuels and their relation to greenhouse gas emissions and climate change, such as the process of burning fossil fuels for electricity generation, contributing more of 29% of world CO2 emissions in 2004. Biomass has received more attention as a viable alternative source as it is abundantly available worldwide and is considered a zero CO2 source. Biomass is a resource that is widely available, is renewable, the price is relatively cheap, some are even free, and can be used widely. The pyrolysis process is the initial stage of the combustion and gasification process. This process is not only an independent transformation technology, but also a part of the gasification and combustion processes which consist of the decomposition of solid fuel into liquid and thermal without the presence of oxidizing agents. The most important advantage of the pyrolysis process is that it can be adjusted to obtain the desired result. For example, a slow pyrolysis process is needed to increase the yield of biochar, while a fast pyrolysis process is needed to increase the yield of bio-oil. The cohe value needed in the MRPP pyrolysis reactor to obtain the most optimal bio-syngas is 886.88 grams to be able to produce the highest percentage of pyrolysis products in the form of bio-syngas of 75.01%. The difference in the simulation using Python on the data when collecting data using the MRPP pyrolysis reactor is the difference of 33.33 grams with the details of the results from data collection which is as much as 750 grams. The efficiency of fuel consumption to operate the MRPP reactor is 225g/hour.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
J. Guwandi
Jakarta: Balai Penerbit Fakultas Kedokteran Universitas Indonesia, 2009
344.041 GUW p
Buku Teks  Universitas Indonesia Library
cover
Los Altos: Lange Medical Publications, 1985
574.192 HAR
Buku Teks  Universitas Indonesia Library
cover
Gopal, Shuba
Boston: McGraw-Hill, 2009
572.802 85 GOP b
Buku Teks  Universitas Indonesia Library
cover
Jenkins, Chris
New York: Momentum Press, 2012
620 JEN b
Buku Teks  Universitas Indonesia Library
cover
cover
Yosephine Merry Devina
Abstrak :
[ABSTRAK
Deposit ampas tebu di Indonesia yang mencapai 8,5 juta ton per tahun menjadikan biomassa ini potensial untuk dikembangkan sebagai pensubstitusi bahan bakar minyak berbasis crude oil. Gelombang mikro merupakan salah satu metode pemanasan yang lebih efisien untuk mempirolisis biomassa, karena metode ini memanfaatkan prinsip konversi energi dan partikel biomassa mengalami pemanasan volumetrik. Ampas tebu dipirolisis dengan variasi daya gelombang mikro sebesar 380, 620, dan 850 Watt dan variasi bio-char dalam umpan sebanyak 0, 10, dan 20%. Karakterisasi yang dilakukan meliputi profil suhu pirolisis, yield produk pirolisis, dan kandungan senyawa di bio-oil dengan metode GC/MS. Peningkatan daya gelombang mikro akan meningkatkan laju pemanasan dan suhu pirolisis ampas tebu, walaupun efeknya tidak terlalu signifikan jika umpannya tidak ditambahkan bio-char. Penambahan bio-char sebagai absorber gelombang mikro secara signifikan meningkatkan laju pemanasan dan suhu pirolisis ampas tebu. Yield bio-oil maksimum, yaitu 42,75 dan 42,40%, diperoleh pada laju pemanasan 805oC/menit dan suhu pirolisis 515oC serta laju pemanasan 59oC/menit dan suhu pirolisis 398oC. Kondisi operasi untuk memperoleh kedua parameter laju pemanasan dan suhu pirolisis tersebut adalah daya gelombang mikro sebesar 380 Watt dengan 20% kandungan bio-char di umpan serta daya gelombang mikro sebesar 850 Watt tanpa kandungan bio-char di umpan. Bio-oil yang diperoleh dari pirolisis ampas tebu yang umpannya mengandung bio-char ternyata mengandung lebih banyak senyawa non-oksigenat dan tidak mengandung PAH. Namun, senyawa non-oksigenat tersebut juga memiliki kandungan rantai karbon panjang (C22+) yang cukup tinggi.
ABSTRACT
Sugarcane bagasse waste in Indonesia reaching 8.5 million tons per year is potential to be developed as a substituent for petroleum-based fuel oil. Microwave is an efficient heating method for biomass pyrolysis, since this method utilizes the principle of energy conversion and biomass undergoes volumetric heating. Sugarcane bagasse was pyrolyzed at the microwave power variation of 380, 620, and 850 Watt and bio-char loading variation of 0, 10, and 20%. Characterizations were conducted on the pyrolysis temperature profile, pyrolysis products yield, and bio-oil content by GC/MS method. The microwave pyrolysis of sugarcane bagasse gave results that increasing microwave power would increase the heating rate and pyrolysis temperature, however this phenomenon was insignificant if the feed contained no bio-char. The addition of bio-char as microwave absorber in the feed significantly increased the heating rate and temperature pyrolysis. The highest bio-oil yields, i.e. 42.75 and 42.40%, were obtained at the heating rate of 805oC/min and pyrolysis temperature of 515oC and heating rate of 59oC/min and pyrolysis temperature of 398oC. Those pyrolysis heating rates and temperatures were achieved at the microwave power of 380 Watt with bio-char loading of 20% and the microwave power of 850 Watt with no bio-char loading. Bio-oil derived from the microwave pyrolysis of sugarcane bagasse which had no bio-char loading in fact contained more non-oxygenated compounds and less PAHs. However, those non-oxygenated compounds have a quite high content of long carbon chains (C22+).;Sugarcane bagasse waste in Indonesia reaching 8.5 million tons per year is potential to be developed as a substituent for petroleum-based fuel oil. Microwave is an efficient heating method for biomass pyrolysis, since this method utilizes the principle of energy conversion and biomass undergoes volumetric heating. Sugarcane bagasse was pyrolyzed at the microwave power variation of 380, 620, and 850 Watt and bio-char loading variation of 0, 10, and 20%. Characterizations were conducted on the pyrolysis temperature profile, pyrolysis products yield, and bio-oil content by GC/MS method. The microwave pyrolysis of sugarcane bagasse gave results that increasing microwave power would increase the heating rate and pyrolysis temperature, however this phenomenon was insignificant if the feed contained no bio-char. The addition of bio-char as microwave absorber in the feed significantly increased the heating rate and temperature pyrolysis. The highest bio-oil yields, i.e. 42.75 and 42.40%, were obtained at the heating rate of 805oC/min and pyrolysis temperature of 515oC and heating rate of 59oC/min and pyrolysis temperature of 398oC. Those pyrolysis heating rates and temperatures were achieved at the microwave power of 380 Watt with bio-char loading of 20% and the microwave power of 850 Watt with no bio-char loading. Bio-oil derived from the microwave pyrolysis of sugarcane bagasse which had no bio-char loading in fact contained more non-oxygenated compounds and less PAHs. However, those non-oxygenated compounds have a quite high content of long carbon chains (C22+)., Sugarcane bagasse waste in Indonesia reaching 8.5 million tons per year is potential to be developed as a substituent for petroleum-based fuel oil. Microwave is an efficient heating method for biomass pyrolysis, since this method utilizes the principle of energy conversion and biomass undergoes volumetric heating. Sugarcane bagasse was pyrolyzed at the microwave power variation of 380, 620, and 850 Watt and bio-char loading variation of 0, 10, and 20%. Characterizations were conducted on the pyrolysis temperature profile, pyrolysis products yield, and bio-oil content by GC/MS method. The microwave pyrolysis of sugarcane bagasse gave results that increasing microwave power would increase the heating rate and pyrolysis temperature, however this phenomenon was insignificant if the feed contained no bio-char. The addition of bio-char as microwave absorber in the feed significantly increased the heating rate and temperature pyrolysis. The highest bio-oil yields, i.e. 42.75 and 42.40%, were obtained at the heating rate of 805oC/min and pyrolysis temperature of 515oC and heating rate of 59oC/min and pyrolysis temperature of 398oC. Those pyrolysis heating rates and temperatures were achieved at the microwave power of 380 Watt with bio-char loading of 20% and the microwave power of 850 Watt with no bio-char loading. Bio-oil derived from the microwave pyrolysis of sugarcane bagasse which had no bio-char loading in fact contained more non-oxygenated compounds and less PAHs. However, those non-oxygenated compounds have a quite high content of long carbon chains (C22+).]
2015
T28971
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>