Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Emilio Mordini
Abstrak :
While a sharp debate is emerging about whether conventional biometric technology offers society any significant advantages over other forms of identification, and whether it constitutes a threat to privacy, technology is rapidly progressing. Politicians and the public are still discussing fingerprinting and iris scan, while scientists and engineers are already testing futuristic solutions. Second generation biometrics, which include multimodal biometrics, behavioural biometrics, dynamic face recognition, EEG and ECG biometrics, remote iris recognition, and other, still more astonishing, applications, is a reality which promises to overturn any current ethical standard about human identification. Robots which recognise their masters, CCTV which detects intentions, voice responders which analyse emotions: these are only a few applications in progress to be developed.
Dordrecht, Netherlands: Springer, 2012
e20400820
eBooks  Universitas Indonesia Library
cover
Abstrak :
This book spans current progress in biometric systems including face recognition, fingerprint recognition, iris recognition and image search systems, connecting them to each other and to progress in color and pattern analysis, mathematics and computer science.
Berlin: Springer, 2012
e20398162
eBooks  Universitas Indonesia Library
cover
Dona Andika Sukma
Abstrak :
Skripsi ini berisi tentang pengidentifikasian biometrik melalui pola pembuluh darah telapak tangan dengan menggunakan metode Hidden Markov Model (HMM), dengan membandingkan keseluruhan sistem terhadap perubahan ukuran codebook dan jumlah iterasi. Metode HMM secara garis besar terdiri dari dua tahapan proses, yakni proses training database, dan proses identifikasi. Pada sistem pengidentifikasian ini, gambar pembuluh darah telapak tangan yang digunakan adalah gambar dari database CASIA-MS-PalmprintV1 yang dikumpulkan oleh Chinese Academy of Sciences Institute of Automation (CASIA). Gambar tersebut terlebih dahulu diolah dengan menentukan ROI. ROI yang sudah didapatkan kemudian diekstraksi dengan melakukan penambahan kontras, pengubahan gambar ke biner dan melakukan thinning terhadap garis-garis yang ada pada gambar sehingga pola pembuluh darah terlihat jelas.
This thesis contains a biometric identification through palm vein patterns using Hidden Markov Models (HMM), by comparing the overall system to changes in the size of the codebook and the number of iterations. HMM method mainly consists of two stages of the process, first one is database training process, and the identification process. This identification system is using palm vein images from Casia-MS-PalmprintV1 database that collected by the Chinese Academy of Sciences Institute of Automation (Casia). First, images are processed by determining the ROI. ROI then extracted by adding contrast, convert to binary image and do the thinning of the lines in the image so that the pattern of vein clearly visible.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1715
UI - Skripsi Open  Universitas Indonesia Library