Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Rendle, Alfred Barton
India: Vikas, 1979
582.13 REN c
Buku Teks  Universitas Indonesia Library
cover
Salaba, Athena
London: Rowman & Littlefield, 2023
025.49 SAL c
Buku Teks  Universitas Indonesia Library
cover
Dinda Sigmawaty
Abstrak :
Saat mencari artikel yang diterbitkan dalam periode waktu yang panjang, pengguna biasanya membutuhkan dokumen yang tidak hanya relevan terhadap topik tetapi juga relevan terhadap waktu. Tesis ini membahas tentang pemeringkatan dokumen dengan konsep waktu atau temporal, di mana dokumen dengan topik dan waktu yang dekat dengan query harus diberikan peringkat yang lebih tinggi. Untuk mengetahui waktu yang sesuai dengan query pengguna, tesis ini mengembangkan teknik pemeringkatan temporal yang diperoleh dari distribusi keterkaitan kata dari waktu ke waktu yang dipelajari pada sebuah arsip berita dalam Bahasa Indonesia. Keterkaitan kata dipelajari menggunakan Dynamic Embeddings yaitu Word2Vec yang dipelajari terpisah dari waktu ke waktu, OrthoTrans-Word2Vec dan Dynamic Bernoulli Embeddings. Dalam menangkap relevansi secara topikal, model yang diusulkan menggunakan Dual Embedding Space Model (DESM) yang dibangun dengan teknik temporal sesuai dengan waktu pembuatan dokumen. Untuk meningkatkan nilai presisi, model tersebut juga menggunakan sebuah klasifikasi temporal yang dipelajari menggunakan Support Vector Machine (SVM) dan Basis Threshold. Skor tertinggi dicapai ketika membangun model menggunakan Word2Vec yaitu 66% pada presisi rata- rata dan 68% pada presisi awal. Model tersebut juga terbukti efektif pada query temporal yang memiliki pola seperti tren, periodisitas, dan musiman. ......When searching for articles published over time, users usually require documents that are not only topically relevant but also created during relevant time periods. This thesis studied about document ranking with temporal concept, where documents with topic and time that closely match with the queries should be ranking higher. In order to capturing the time of user query intent, the models developed with temporal ranking technique from distribution of word relatedness over time learned from news archive in Bahasa Indonesia. Word relatedness captured by using Dynamic embeddings, such as Word2Vec learned separately over time, OrthoTrans-Word2Vec dan Dynamic Bernoulli Embeddings. For capturing topical relevance, the proposed model used Dual Embedding Space Model (DESM) in the temporal technique according to document timestamp. The model also combined with temporal classification using Support Vector Machine (SVM) and threshold-based strategy. The highest score was achieved by a model using Word2Vec, which is 66% in average precision and 68% in early precision. The result also showed that the model is effective in capturing temporal patterns such as spikes, periodicity, and seasonality
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Fauzi
Abstrak :
ABSTRAK
Perkembangan jumlah pengguna internet di Indonesia mengalami peningkatan dari tahun ke tahun. Perkembangan internet berdampak pula pada munculnya beberapa ecommerce, tidak terkecuali ecommerce yang bergerak dalam jasa pemesanan tiket dan hotel. Selain itu, internet juga mendukung media sosial untuk mengekspresikan opini yang objektif tentang suatu produk/jasa. Media sosial dijadikan sebagai media electrocic word of mouth e-wom oleh pelaku jasa ecommerce. Peneltian ini terkait analisis sentiment, reputasi brand, dan jaringan sosial di Twitter terkait ecommerce yang bergerak pada bidang pemesanan hotel dan tiket. Data yang digunakan di dalam penelitian ini merupakan data yang berhubungan dengan mention @pegi_pegi, @traveloka, dan @tiket yang diambil dari periode 24 September 2016 sampai 21 November 2016. Penelitian ini menggunakan algoritme GaussianNB, MultinomialNB, BernoulliNB, ME, SVM, dan Xgboost pada proses pembuatan model. Pada kasus imbalance data, proses pembuatan model menggunakan SMOTE yang bertujuan menyeimbangkan jumlah kelas pada data yang ada. Akurasi terbaik diperoleh dengan menggunakan algoritme SVM SMOTE sebesar 0.96, presisi sebesar 0.96, recall sebesar 0.96, dan F1-Score sebesar 0.96. Nilai reputasi brand untuk @pegi_pegi sebesar -6, @traveloka sebesar -5, dan @tiket sebesar -2. Akun yang memiliki tingkat pengaruh secara keseluruhan terhadap @pegi_pegi yaitu @calvinjeremy, @traveloka yaitu @banyuwangi_kab, dan @tiket yaitu @IndahJuli.
ABSTRACT
The number of internet users in Indonesia has increased from year to year. Internet development impact on the emergence of e commerces, including in ticket and hotel reservation services. In addition, the internet also supports social media to express their opinions about a product service. Social media is used as a medium electrocic word of mouth e wom by actor rsquo s ecommerce services. This study focuses on sentiment analysis, brand reputation, and social networking on Twitter related to e commerce that focuses on the hotel and ticket reservations. The data used in this research is data related to pegi pegi, traveloka, and tiket taken from the period 24 September 2016 until 21 November 2016. This research uses a GaussianNB algorithm, MultinomialNB, BernoulliNB, ME, SVM, and Xgboost in the modeling process. In case of imbalanced data, process modeling using SMOTE which aims to balance the number of classes on existing data. Best accuracy obtained by using SVM algorithm SMOTE is 0.96, the precision is 0.96, the recall is 0.96, and F1 Score is 0.96. Brand reputation for pegi pegi is 6, traveloka is 5, and tiket is 2. Accounts that have effect on pegi pegi is calvinjeremy, traveloka is banyuwangi kab, and tiket is IndahJuli.
2017
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library