Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Favian Kharisma Hazman
"Data aktivitas pembelajaran seperti pada learning management system dapat digunakan untuk memantau kegiatan belajar. Penyajian data kegiatan pembelajaran secara real-time membantu pengambilan keputusan yang lebih cepat. Penelitian ini merancang dan mengimplementasikan sistem real-time change data capture menggunakan write-ahead logging dan distributed stream processing untuk learning analytics di Fakultas Ilmu Komputer Universitas Indonesia (Fasilkom UI). Data yang disajikan berasal dari learning management system dan sistem presensi berbasis smart card. Dengan real-time change data capture menggunakan Debezium, data dapat disajikan secara real-time dan ringan dalam membebani sistem sumber data. Sistem menggunakan Apache Kafka sebagai message queue dan Apache Flink untuk melakukan distributed stream processing. Data disajikan dalam dashboard visualisasi menggunakan Grafana. Aktivitas pembelajaran yang disajikan secara real-time pada dashboard dapat digunakan untuk melihat pola kegiatan belajar mahasiswa dan membantu pengambilan keputusan.

Learning activity data such as the learning management system can be used to monitor learning activities. Presentation of learning activity data in real time helps faster decision making. This research design and implement a real-time data capture change system using write-ahead logging and distributed stream processing for learning analytics at the Faculty of Computer Science, University of Indonesia (Fasilkom UI). Data comes from learning management systems and presence-based systems smart card. With real-time change data capture using Debezium, data can be presented in real-time while not overloading the data sources. The system uses Apache Kafka as a message queue and Apache Flink to do distributed stream processing. Data is presented in a visualization dashboard using Grafana. Learning activities data that are presented on the real-time dashboard can be used to see patterns of student learning activities and assist decision making."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Riswanda Alifarahman
"Tingginya jumlah kendaraan bermotor di Indonesia memiliki dampak kepada kualitas udara. Aplikasi Mahoni merupakan upaya solusi dari permasalahan tersebut dengan membawa konsep kota cerdas. Penulis melakukan pengembangan arsitektur microservice yang melayani fitur pada aplikasi Mahoni yaitu servis kualitas udara, perjalanan, dan penukaran poin menjadi kupon sesuai dengan kebutuhan pengguna. Aplikasi Mahoni dikembangkan dengan menggunakan arsitektur event-driven agar dapat mencatat beragam data yang berasal dari sensor udara dan aktivitas pengguna secara real-time. Digunakan message broker untuk mendapatkan throughput yang tinggi dan mempermudah integrasi dengan komponen big data yang memerlukan data stream untuk melakukan stream processing dan real-time analytics melalui change data capture. Data stream diolah menjadi keluaran yang dibutuhkan seperti visualisasi data menggunakan dashboard. Untuk mencapai hal tersebut, arsitektur Kappa diimplementasikan untuk membangun arsitektur big data yang scalable dan reliable. Keterhubungan implementasi keseluruhan arsitektur pada penelitian ini diuji dengan melakukan end-to-end testing. Hasil pengujian menunjukkan bahwa keseluruhan komponen sistem aplikasi Mahoni terhubung dengan baik dalam memenuhi kebutuhan pengguna. Komponen arsitektur event-driven terbukti dapat mengatasi data stream dengan throughput tinggi dan bersifat loosely-coupled sehingga integrasi komponen baru pada sistem lebih mudah. Komponen arsitektur big data juga terbukti dapat mengatasi pertumbuhan data dengan melakukan scaling sehingga menghasilkan sistem yang reliable.

The high number of motorized vehicles in Indonesia is causing air quality issues. To combat this problem, the Mahoni application introduces a smart city concept. It employs a microservice architecture, offering features such as air quality monitoring, travel assistance, and point redemption for coupons according to user needs. Event-driven architecture is utilized for real-time data collection from air sensors and user interactions. Message broker is used to get high throughput and facilitate integration with big data components that require data streams to perform stream processing and real-time analytics through change data capture. Stream data is processed into the required output such as data visualization using dashboards. To achieve this, Kappa architecture is implemented to build a scalable and reliable big data architecture. The connectedness of the implementation of the entire architecture in this study was tested by conducting end-to-end testing. The results of the test show that all components of the Mahoni application system are well connected in meeting user needs. The event-driven architecture component is proven to cope with high-throughput data streams and is loosely-coupled, allowing easy integration of new components. The big data architecture component is also proven to accommodate data growth by scaling, ensuring a reliable system."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Natasya Zahra
"Tingginya jumlah kendaraan bermotor di Indonesia memiliki dampak kepada kualitas udara. Aplikasi Mahoni merupakan upaya solusi dari permasalahan tersebut dengan membawa konsep kota cerdas. Penulis melakukan pengembangan arsitektur microservice yang melayani fitur pada aplikasi Mahoni yaitu servis kualitas udara, perjalanan, dan penukaran poin menjadi kupon sesuai dengan kebutuhan pengguna. Aplikasi Mahoni dikembangkan dengan menggunakan arsitektur event-driven agar dapat mencatat beragam data yang berasal dari sensor udara dan aktivitas pengguna secara real-time. Kafka digunakan sebagai message broker untuk mendapatkan throughput yang tinggi dan mempermudah integrasi dengan komponen big data yang memerlukan data stream untuk melakukan stream processing dan real-time analytics melalui change data capture dengan bantuan Debezium dan Kafka Connect. Data stream diolah menjadi keluaran yang dibutuhkan seperti visualisasi data menggunakan dashboard. Untuk mencapai hal tersebut, arsitektur Kappa diimplementasikan untuk membangun arsitektur big data yang sederhana, scalable, dan reliable. Arsitektur big data pada penelitian ini terdiri dari beberapa komponen yaitu Flink, Cassandra, InfluxDB, dan Grafana. Keterhubungan implementasi keseluruhan arsitektur pada penelitian ini diuji dengan melakukan end-to-end testing. Hasil dari pengujian tersebut menunjukkan bahwa keseluruhan komponen sistem aplikasi Mahoni terhubung dengan baik dalam memenuhi kebutuhan pengguna. Komponen arsitektur event-driven juga dibuktikan dapat mengatasi data stream dengan throughput tinggi dan bersifat loosely-coupled sehingga integrasi komponen baru pada sistem lebih mudah. Komponen arsitektur big data juga dibuktikan dapat mengatasi pertumbuhan data dengan melakukan scaling pada Flink sehingga menghasilkan sistem yang reliable.

The high number of motorized vehicles in Indonesia has an impact on air quality. Mahoni application is an attempt to solve the problem by bringing the concept of smart city. The author develops a microservice architecture that serves features in the Mahoni application, namely air quality services, travel, and redemption of points into coupons according to user needs. Mahoni application is developed using event-driven architecture in order to record various data from air sensors and user activities in real-time. Kafka is used as a message broker to get high throughput and facilitate integration with big data components that require data streams to perform stream processing and real-time analytics through change data capture with the help of Debezium and Kafka Connect. Stream data is processed into the required output such as data visualization using dashboards. To achieve this, Kappa architecture is implemented to build a simple, scalable, and reliable big data architecture. The big data architecture in this research consists of several components, namely Flink, Cassandra, InfluxDB, and Grafana. The connectedness of the implementation of the entire architecture in this study was tested by conducting end-to-end testing. The results of the test show that all components of the Mahoni application system are well connected in meeting user needs. The event-driven architecture component is also proven to be able to cope with high-throughput data streams and is loosely-coupled so that the integration of new components in the system is easier. The big data architecture component is also proven to be able to cope with data growth by scaling Flink to produce a reliable system."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fathan Muthahhari
"Tingginya jumlah kendaraan bermotor di Indonesia memiliki dampak kepada kualitas udara. Aplikasi Mahoni merupakan upaya solusi dari permasalahan tersebut dengan membawa konsep kota cerdas. Penulis melakukan pengembangan arsitektur microservice yang melayani fitur pada aplikasi Mahoni yaitu servis kualitas udara, perjalanan, dan penukaran poin menjadi kupon sesuai dengan kebutuhan pengguna. Aplikasi Mahoni dikembangkan dengan menggunakan arsitektur event-driven agar dapat mencatat beragam data yang berasal dari sensor udara dan aktivitas pengguna secara real-time. Digunakan message broker untuk mendapatkan throughput yang tinggi dan mempermudah integrasi dengan komponen big data yang memerlukan data stream untuk melakukan stream processing dan real-time analytics melalui change data capture. Data stream diolah menjadi keluaran yang dibutuhkan seperti visualisasi data menggunakan dashboard. Untuk mencapai hal tersebut, arsitektur Kappa diimplementasikan untuk membangun arsitektur big data yang scalable dan reliable. Keterhubungan implementasi keseluruhan arsitektur pada penelitian ini diuji dengan melakukan end-to-end testing. Hasil pengujian menunjukkan bahwa keseluruhan komponen sistem aplikasi Mahoni terhubung dengan baik dalam memenuhi kebutuhan pengguna. Komponen arsitektur event-driven terbukti dapat mengatasi data stream dengan throughput tinggi dan bersifat loosely-coupled sehingga integrasi komponen baru pada sistem lebih mudah. Komponen arsitektur big data juga terbukti dapat mengatasi pertumbuhan data dengan melakukan scaling sehingga menghasilkan sistem yang reliable.

The high number of motorized vehicles in Indonesia is causing air quality issues. To combat this problem, the Mahoni application introduces a smart city concept. It employs a microservice architecture, offering features such as air quality monitoring, travel assistance, and point redemption for coupons according to user needs. Event-driven architecture is utilized for real-time data collection from air sensors and user interactions. Message broker is used to get high throughput and facilitate integration with big data components that require data streams to perform stream processing and real-time analytics through change data capture. Stream data is processed into the required output such as data visualization using dashboards. To achieve this, Kappa architecture is implemented to build a scalable and reliable big data architecture. The connectedness of the implementation of the entire architecture in this study was tested by conducting end-to-end testing. The results of the test show that all components of the Mahoni application system are well connected in meeting user needs. The event-driven architecture component is proven to cope with high-throughput data streams and is loosely-coupled, allowing easy integration of new components. The big data architecture component is also proven to accommodate data growth by scaling, ensuring a reliable system."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library