Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Rievanda Putri
"Salah satu metode deteksi penyakit Diabetes mellitus ialah dengan mengukur kadar glukosa pada darah dengan mengambil sejumlah darah untuk dilakukan pengukuran. Selain itu, metode pengukuran bersifat non-invasif juga sedang mengalami perkembangan, di antaranya ialah iridologi. Penelitian ini memfokuskan pada perancangan suatu sistem prediksi Diabetes mellitus melalui citra iris (iridologi) yang bersifat non-invasif. Pemetaan organ yang berkorespondensi pada wilayah iris dapat dimanfaatkan untuk memprediksi kerusakan jaringan organ, khususnya pada pankreas sebagai penghasil insulin.
Sistem yang dikembangkan terdiri atas instrumen akuisisi citra iris dan algoritma pengolahan citra yang berbasis pada ciri tekstur. Pemrosesan citra yang dilakukan ialah peningkatan kualitas melalui metode FFT filtering dan grayscaling, lokalisasi iris dengan circular hough transform (CHT), dan normalisasi dengan rubber-sheet normalization. Kemudian dilakukan segmentasi daerah pankreas pada iris sejumlah satu ROI di mata kanan dan dua ROI di mata kiri.
Akuisisi citra iris dilakukan sebanyak tiga kali pada 15 subjek tidak Diabetes dan 11 subjek Diabetes. Ekstraksi ciri yang dilakukan menggunakan filter Gabor pada bagian ROI tersebut. Model ANN digunakan untuk klasifikasi kelas Diabetes dan non-Diabetes menggunakan metode SCG dan cross validation menghasilkan akurasi sebesar 87.6%, misclassification error (MR) 12.4%, false positive rate (FPR) 8.26%, false negative rate (FNR) 18.8%, sensitivity 81.2% dan specificity 91.7%. Nilai tersebut menggambarkan bahwa sistem secara umum dapat bekerja untuk membantu prediksi seseorang berpenyakit Diabetes.

One of Diabetes mellitus detection method is to measure the blood glucose by drawing small amount of blood. Other than that, some non-invasive methods also have been developed, one of the alternative methods is iridology. This research focus on development of non-invasive Diabetes mellitus prediction system through iris image. The mapping of organs that corresponded in iris image can be used to detect damaged tissues of an organ, particularly in pancreas where insulin hormone is made.
The developed system consists of image acquisition instrument and image processing algorithm using texture characteristics. The processing starts with image enhancement using filter FFT and grayscaling, iris localization using circular hough transform (CHT), and normalization using rubber-sheet normalization. Segmentation on pancreas in iris image then resulted as followed, one ROI of right eye image and two ROIs of left eye image.
Image acquisition was done with maximum of three images taken and used from 15 health subjects and 11 Diabetes subjects. Feature extraction method that used is Gabor filter. Classification model ANN is used to classify between Diabetes and health subjects with SCG function and cross validation results in accuracy number of 87.6%, misclassification error (MR) 12.4%, false positive rate (FPR) 8.26%, false negative rate (FNR) 18.8%, sensitivity 81.2% and specificity 91.7­­%. Those results show that, system in general has worked to help in prediction of Diabetes.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Josephine
"Salah satu metode yang digunakan untuk mendeteksi kadar kolesterol seseorang adalah dengan mengambil sejumlah darah untuk diuji. Namun, hal tersebut dapat membuat sejumlah orang merasa kurang nyaman. Oleh karena itu, metode pegukuran bersifat tidak merusak dibuat dan mengalami perkembangan yang pesat. Salah satu metode bersifat tidak merusak yang ditemukan adalah dengan menggunakan Iridologi. Fokus pada penelitian ini adalah perancangan sistem untuk memprediksi kelas kolesterol seseorang melalui citra iris. Kondisi kesehatan setiap organ dan jaringan pada tubuh dapat dilihat melalui iris. Hal tersebut dapat dimanfaatkan untuk memprediksi kelas kolesterol seseorang. Sistem yang dibuat terdiri dari instrument yang berfungsi untuk meng-akuisisi citra iris dan algoritma pengolahan citra yang berbasis ciri tekstur. Pemrosesan yang dilakukan pada citra iris adalah peningkatan kualitas dengan metode penyaringan Fast Fourier Transfor, dan mengubah citra menjadi keabuan, lokalisasi, normalisasi dan segmentasi 30% terluar dari citra iris. Metode ekstraksi ciri yang digunakan pada penelitian ini adalah Gray Level Co-occurance Matrix dengan jarak tetangga sebesar 45%, 65% dan 90%. Model klasifikasi terbaik dengan menggunakan MLP dapat mengklasifikasi kelas kolesterol tinggi dan kolesterol normal dengan K-fold cross validation dengan akurasi sebesar 86,67%, misclassification rate (MR) sebesar 13,33%, false positive rate (FPR) sebesar 9,09%, dan false negative rate (FNR) sebesar 25%.

One of the methods to detect the rate of cholesterol levels, is to extract a certain amount of blood from a subject’s body, which will then be tested. However, these practices has been deemed by a substantial amount of individuals or groups to be an uncomfortable procedure. These unpleasant reactions are the reason for the manufacturing and improvement of another measuring method, which is considerably less invasive. It is called Iridology, where the study or predictions of one’s cholesterol levels are based on one’s iris image. The method is developed further on an acquisition instrument and image processing algorithm, which are both based on an image texture factor. The pre-processing that are applied to the image are quality enhancement with an FFT filtering method and the transformation into a grayscale image, which are then localized, normalized, and segmented by 30% outlying the iris image. The extraction method applied in this study is the Gray Level Co-occurance Matrix with a neighbouring distance of 45%, 65%, and 90%. The Multilayer Perceptron Model is used to categorize different classes of both normal and high cholesterol levels with K-fold cross validation to produce an accuracy rate of 86,67%, misclassification rate (MR) of 13,33%, false positive rate (FPR) of 9,09%, and false negative rate (FNR) of 25%. These established rates proves that the alternative method is able to classifying an individual’s cholesterol levels in a less invasive manner."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library