Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Muhammad Ariq Fauzan
"ABSTRACT
Umumnya untuk membedakan antara lidah perokok dan lidah bukan perokok adalah dengan melihat secara visual yang dilakukan oleh praktisi medis dan masih bersifat invasif. Dalam penelitian ini, sistem pengenalan lidah perokok dibangun dengan menggunakan teknik pencitraan hiperspektral dengan rentang spektrum panjang gelombang VNIR Visible Near Infrared berbasis kombinasi ciri spektral dan ciri tekstur. Tujuan penelitian ini adalah membangun sistem pengenalan lidah perokok berbasis kombinasi ciri spektral dan ciri tekstur untuk meningkatkan nilai akurasi pada sistem pengenalan lidah perokok yang berbasis ciri spektral saja. Ciri spektral yang digunakan adalah nilai reflektansi yang didapat langsung dari ROI Region of Interest citra lidah, sedangkan untuk ciri tekstur yang digunakan adalah nilai energi, homogenitas, korelasi, dan kontras yang didapat pada metode ekstraksi ciri GLCM Gray level Co-occurence Matrix. Kedua ciri tersebut dikombinasikan sebagai input yang digunakan pada tahapan seleksi ciri dengan metode PLS Partial Least Square, yang kemudian akan diklasifikasikan menggunakan metode SVM Support Vector Machine. Hasil klasifikasi SVM kemudian dilakukan validasi dengan menggunakan metode k-cross validation. Nilai Akurasi yang didapat dari hasil klasifikasi SVM dengan kombinasi ciri spektral dan ciri tekstur di 4 bagian lidah, lebih baik dibandingkan dengan nilai akurasi yang didapat dari hasil klasifikasi SVM dengan ciri spektral saja, dengan kenaikan akurasi sebesar 1,19 untuk lidah bagian anterior, 3,35 untuk lidah bagian posterior, 7,95 untuk lidah bagian lateral A, dan 1,02 untuk lidah bagian lateral B.

ABSTRACT
Generally, to differentiate between smoker 39s tongue and non smoker 39s tongue is by doing an eye examination, which is invasive and performed by medical practitioners. In this research, smoker 39s tongue recognition system is built by using hyperspectral imaging technique with range of VNIR wavelength spectra, which is based on a combination of spectral features and texture features. The aim of this study is to built smoker 39s tongue recognition system based on a combination of spectral features and texture features to increase the value accuracy of smoker 39s tongue recognition system based on its spectral features only. The spectral features used are the reflectance value obtained from ROI Region of Interest from tongue images, while the texture characteristics used are the energy value, homogenity, correlation, and contrast obtained from extraction method of GLCM Gray Level Co occurence Matrix features. Both features are combined as an input used in the feature selection stage by using PLS Partial Least Square method, which then will be classified by using SVM Support Vector Machine method. After that, the SVM classification result will be validated by using k cross validation method. The value accuracy which is obtained from SVM classification result, by combining the spectral features and the texture characteristics in four regions of tongue, is better than the value accuracy from SVM classification result with spectral features only, with an accuracy increase of 1.19 for anterior region of tongue, 3.35 for posterior region of tongue, 7.95 for lateral A region of tongue, and 1,02 for lateral B region of tongue."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Praditya
"ABSTRAK
Identifikasi lapisan lilin pada buah sangat sulit dilakukan tanpa adanya suatu sistem yang bersifat non-destruktif. Pada umumnya, dilakukan metode yang bersifat destruktif untuk mengetahui ada atau tidaknya suatu lapisan pada buah, seperti merendam buah pada air panas, menggunakan campuran cuka dengan air, atau campuran soda kue dengan air. Adapun metode destruktif lainnya yang menggunakan instrumentasi kromatografi gas, dimana proses ini membutuhkan waktu yang lama dan pengoperasian yang sulit. Citra VNIR menjadi metode terbaru untuk mengatasi masalah tersebut karena metode ini bersifat non-destruktif dan lebih mudah untuk dioperasikan. Dalam penelitian ini, sistem identifikasi ada atau tidaknya lapisan lilin pada buah apel berhasil dibuat. Proses dimulai melalui akuisisi citra, koreksi citra, object detection, window averaging, model klasifikasi, hingga mendapatkan status pelapisan (coating status). Citra diakuisisi pada rentang panjang gelombang 400 hingga 100 nm. Profil reflektansi yang didapat, selanjutnya dikomparasikan antara satu kelas dengan kelas lainnya, sehingga terlihat perbedaan yang mencolok diantara keduanya. Selanjutnya, model akan diuji dan dievaluasi menggunakan data referensi yang merupakan hasil klasifikasi secara manual. Pembuatan dan pengujian model dilakukan melalui proses traning dan testing data. Pada penelitian ini, digunakan beberapa model klasifikasi yang dibuat berdasarkan profil reflektansi dari setiap citra yang telah diakuisisi. Hasil akurasi model melalui evaluasi confusion matrix didapat sebesar 70,83% untuk model PCA-SVM, 95,42% untuk model DT, dan 98,33% untuk model RF.

ABSTRACT
Wax coating identification on fruits is very difficult without a non-destructive system. In general, destructive methods were used to find out whether or not there are coatings on fruit, such as soaking fruit in hot water, using a mixture of vinegar and water, or baking soda and water. There are other destructive methods using instrumentation like gas chromatography, where this process takes much time and difficult to operate. VNIR imaging becomes the latest method to overcome this problem because this method is non-destructive and easier to operate. In this study, identification system for the presence or absence of wax coating on apples has been successfully made. The process starts through image acquisition, image correction, object detection, window averaging, classification model, until we got the coating status. The image was acquired on a wavelength range from 400 to 1000 nm. The reflectance profile is obtained, then it is compared between one class and the other class, until there is a noticable difference between the two. Next, the model will be tested and evaluated using reference data which is the result of manual classification. The making and testing of the model was done through the process of data training and data testing. In this study, several classifications models were made based on the reflectance profile of each acquired image. The accuracy of the model through confusion matrix evaluatin were 70.83% for the PCA-SVM model, 95.42% for the DT model, and 98.33% for the RF model."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library