Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 20 dokumen yang sesuai dengan query
cover
Nabilla Ayu Fauziyyah
Abstrak :
ABSTRACT
Dewasa ini, sudah banyak rumah sakit modern yang dilengkapi dengan peralatan monitoring yang lengkap, yang menyebabkan makin banyaknya data medis yang tersimpan. Data medis ini memiliki karakteristik khusus, dan biasanya metode statistika biasa tidak dapat diterapkan begitu saja. Dari sinilah kemudian muncul gagasan mengenai Medical Data Mining (MDM) yang sudah terbukti cocok untuk diterapkan dalam analisis data medis. Naive Bayes Classifier (NBC) merupakan salah satu implementasi dari MDM. Kendati terbukti memiliki hasil yang akurat dan memuaskan dalam proses diagnosis medis, metode-metode dalam MDM belum sepenuhnya diterima dalam praktek medis untuk diterapkan. Alasan utama mengapa metode ini belum dapat diterima adalah karena terdapatnya resistansi dari tenaga medis terhadap metode diagnosis yang baru. Tujuan dari penelitian ini adalah untuk menerapkan dan mengevaluasi performa NBC  pada data rekam medis pasien kanker payudara di salah satu rumah sakit di Jakarta dalam masalah klasifikasi subtipe molekular kanker payudara, serta membandingkan hasil klasifikasi NBC dengan metode MDM lain, yaitu Decision Tree (DT). Hasil analisis menunjukkan bahwa NBC mengungguli DT dengan tingkat akurasi sebesar 92,8%. Selain itu, dapat juga ditunjukkan secara empiris bahwa NBC mampu menangani missing value dengan cukup baik dan tidak membutuhkan data dalam jumlah banyak untuk tetap dapat mengklasifikasikan sebagian besar pasien dengan benar.
ABSTRACT
Nowadays, modern hospitals are well equipped with data monitoring devices, which resulted in an abundant amount of medical data. These medical data possess specific characteristics and usually, statistical methods could not be applied directly. This is what started the notion of Medical Data Mining (MDM), which has proven to be effective in analysing medical data. Naive Bayes Classifier (NBC) is an implementation of MDM. Even though MDM methods produce a sufficiently accurate and satisfying results in diagnosis problems, these methods are still not well accepted in the medical practice. One of the main reasons is because there is a resistance of physicians to a new diagnosis method. The main goal of this study is to apply and evaluate the performance of NBC in classifying breast cancer patients in a private hospital in Indonesia into five classes of molecular subtypes and compare its performance with another popular MDM method, Decision Tree (DT). Results showed that NBC outperformed DT by reaching an accuracy rate of 92.8%. This study could also show empirically that NBC does not need a big dataset to be able to achieve a high accuracy rate and that NBC could handle the problem of missing values just fine.
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syem Haikel
Abstrak :
ABSTRACT
Metode rock typing adalah suatu metode yang dapat digunakan untuk menentukan nilai permeabilitas batuan dan mengklasifikasikan tipe batuan menjadi beberapa kelompok berdasarkan kondisi batuan sebenarnya. Penelitian ini menggunakan beberapa metode rock typing, yaitu metode Lucia, Flow Zone Indicator FZI, Winland R35, dan Pore Geometry Structure PGS. Penelitian ini menggunakan tiga sumur yang memiliki data core sebagai sumur referensi untuk digunakan metode-metode tersebut. Tujuan utama adalah melakukan komparasi dan memilih metode terbaik dari keempat metode tersebut. Kemudian menggunakan hasil metode rock typing untuk membuat model klasifikasi dan diaplikasikan kedalam sumur target yang tidak memiliki data core. Untuk klasifikasi, penelitian ini menggunakan dan melakukan komparasi metode Na ve Bayes dan Random Forest. Hasil yang diperoleh menunjukkan bahwa metode Lucia dan Na ve Bayes adalah metode rock typing dan classifier terbaik untuk penelitian ini. Kedua metode tersebut memiliki crossplot hubungan AI dan SI yang distribusinya terseparasi dengan baik berdasarkan kelas tipe batuannya. Sehingga untuk penelitian selanjutnya, hasil tersebut dapat digunakan dan diaplikasikan kedalam model seismik.
ABSTRACT
Rock typing is a method that can be used to determine permeability value of rocks and classify rock type in reservoir rocks into different units based on actual rocks conditions. This study uses several rock typing methods, that are Lucia, Flow Zone Indicator FZI, Winland R35, and Pore Geometry Structure PGS. This study uses three wells that have core data as reference wells for those methods. First objective is comparing those four methods and choose the best method for our study. Then, using the result of rock typing method to make a classification model and is applied into target wells that don rsquo t have core data. For classification, this study uses and compares Na ve Bayes and Random Forest method. The result shows Lucia and Na ve Bayes is the best rock typing and classifier method. Those methods able to have AI and SI crossplot which distributed separately well based on its rock type. So for future works, that results can be used and applied into seismic model.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bahy Helmi Hartoyo Putra
Abstrak :
PT Nusa Satu Inti Artha atau lebih dikenal dengan DOKU merupakan salah satu perusahaan fintech yang bergerak di sektor pembayaran. DOKU telah digunakan oleh lebih dari 100.000 merchant online dalam kedua layanannya, yaitu payment gateway dan transfer service. Semakin banyaknya merchant yang melakukan registrasi, menuntut DOKU untuk lebih efisien dalam menjalankan salah satu tahapan pada proses registrasi tersebut, yaitu verifikasi situs merchant. Penilitian ini memiliki tujuan untuk mengem- bangkan sebuah aplikasi web crawler yang dapat digunakan untuk melakukan ekstraksi kelengkapan data situs merchant dan melakukan prediksi tingkatan fraud situs tersebut secara otomatis. Web crawler dibuat menggunakan micro web framework bernama Flask dan berisi modul-modul yang dapat melakukan ekstraksi fitur-fitur untuk kemudian dilakukan scoring menggunakan model machine learning yang diimplementasi di dalamnya. Pemilihan model dilakukan dengan cara melakukan nested cross-validation terhadap empat jenis classifier, yaitu Decision Tree Classifier, Random Forest Classifier, Extreme Gradient Boost Classifier, dan Bernoulli Naive Bayes Classifier. Hasil analisis menunjukkan bahwa Bernoulli Naive Bayes Classifier memiliki hasil performa terbaik, sehingga classifier ini juga yang akan diimplementasikan pada web crawler. Hasil dari pengembangan web crawler menunjukkan bahwa efisiensi waktu proses verifikasi dapat ditingkatkan sebesar 4900% dengan AUC sebesar 0.953 dan recall sebesar 0.864. ......PT Nusa Satu Inti Artha or better known as DOKU is one of the fintech companies engaged in the payment sector. DOKU has been used by more than 100,000 online mer- chants in its two services, namely payment gateway and transfer service. More and more merchants are registering, demanding DOKU to be more efficient in carrying out one of the stages in the registration process, namely merchant site verification. This research aims to develop a web crawler application that can be used to extract the the merchant site data and to predict the fraud level of the site automatically. Web crawler is created using a micro web framework named Flask and contains modules that can extract features to then do scoring using the machine learning model implemented in it. Model selection is done by doing nested cross-validation of four types of classifier namely Decision Tree Classifier, Random Forest Classifier, Extreme Gradient Boost Classifier, and Bernoulli Naive Bayes Classifier. The analysis shows that the Bernoulli Naive Bayes Classifier has the best performance results, so this classifier will be the one that implemented on the web crawler. The results of the development of web crawler show that the efficiency of the verification process can be increased by 4900% with AUC of 0.953 and recall of 0.864.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irwansah
Abstrak :
Pada proses analisa video, permasalahan deteksi dan identifikasi objek adalah masalah yang sering dijumpai dan menjadi akar masalah yang menyebabkan analisa video masih belum bisa dilakukan secara real time dan diaplikasikan untuk hal yang kompleks. Oleh sebab itu, telah banyak metode yang dikembangkan untuk mengatasi permasalahan tersebut. Salah satu metode yang digunakan untuk identifikasi objek adalah Gaussian Bayes Classifier. Pada skripsi ini dirancang dan disimulasikan identifikasi objek yang berada di tangan dengan menggunakan Gaussian Bayes Classifier. Parameter correctness percentage digunakan untuk menguji performansi dari identifikasi objek (kaleng Green Sands, kaleng Pocari Sweat, dan Biore) yang berada di tangan. Hasil simulasi menunjukkan bahwa hasil pengidentifikasian objek yang memiliki ketepatan pengidentifikasian yang paling paling baik adalah ketika mengidentifikasi antara tidak ada objek dengan objek kaleng Green Sands yang memiliki nilai rata ? rata correct percentage yang mencapai 89% untuk setiap percobaannya dan 94,6% untuk setiap percobaannya saat pengidentifikasian tidak ada objek.
In video analysis process, problem in object detection and object identification is a common problem and the root problem that causes the video analysis still can?t be used in real time and applied to complex condition. Therefore, many methods have been developed to overcome these problems. One of the methods which is used for object identification is Gaussian Bayes Classifier method. In this thesis is designed and simulated object identification in hand using Gaussian Bayes Classifier. Correctness percentage parameter is used to test the performance of in hand object identification (for object Greend Sands?s can, Pocari Sweat?s can, and Biore) . The simulation result show that identification result which has best accuracy is when identifying between no object and object Green Sands?s can which has average value of correct percentage that reach 89% for each experiment and 94,6% for each experiment when identifying no object.
2012
S1922
UI - Skripsi Open  Universitas Indonesia Library
cover
Kresna Bima Sudirgo
Abstrak :
Biaya transportasi adalah salah satu komponen untuk mendapatkan keuntungan maksimal, tetapi sekarang tingkat emisi yang dihasilkan dari kegiatan transportasi juga menjadi perhatian di dunia industri. Model optimal komponen biaya dan emisi diperlukan untuk mendapatkan skenario terbaik yang memiliki biaya dan emisi rendah untuk mendukung komitmen industri ramah lingkungan. Untuk mencapai model yang dapat menyerupai kondisi asli di tempat tertentu kita akan menggunakan metode classifier Naïve Bayes. Model ini akan mengklasifikasikan tingkat keramahan lingkungan dan efisiensi biaya berdasarkan pengukuran berat dan volume menggunakan database yang diperoleh dari area tertentu, pada riset ini periset menggunakan beberapa skenario transportasi dari zona industri yang memiliki aktivitas melalui pelabuhan Tanjung Priok. Sebagai hasil dari pengklasifikasi alat yang dapat mengklasifikasikan tingkat hijau, tingkat biaya dan karakteristik barang yang sesuai (apakah itu cenderung memenuhi berat atau volume) berdasarkan metode pengklasifikasi Naïve Bayes. ......Transportation costs are one of the components to get the maximum profit, but now the level of emissions resulting from transportation activities also becomes a concern in the industry. Optimum models of cost and emissions components required to get the best scenario that has low costs and emissions to support green industrial commitment. To achieve a model that can resemble the original conditions on the specific place we will use the Naïve Bayes classifier method. This model will classify the environmental friendliness and cost efficiency incurred with weight and volume measurement based on existing databases acquired from specific areas, at this study researcher using multiple transportation scenarios from industrial zones that had activity through the Tanjung Priok port. As a result of a classifier of tools that can classify green levels, cost levels and suitable characteristics of goods (whether it tends to meet weight or volume) based on Naïve Bayes classifier methods.
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohamad Irvan Septiar Musti
Abstrak :
ABSTRAK
HIV Human Immunodeficiency Virus adalah sebuah jenis retrovirus obligat intraseluler yang menyerang sistem kekebalan tubuh manusia. Virus ini menyerang dengan cara melakukan interaksi antara protein virus dengan protein manusia. Penelitian ini menggunakan data berupa barisan asam amino dari protein yang akan diubah fiturnya menggunakan metode global encoding. Hasil ekstraksi fitur tersebut kemudian akan digunakan sebagai masukan untuk metode rotation forest guna memprediksi interaksi protein HIV dengan manusia. Selain itu pula, penelitian ini juga membandingkan performa metode rotation forest yang menggunakan Principal Component Analysis RF PCA dengan rotation forest yang menggunakan Independent Principal Component Analysis RF IPCA sebagai metode transformasi peubah bebas dalam metode tersebut. Hasil dari penelitian ini menunjukkan bahwa RF PCA memperoleh hasil performa tertinggi dalam memprediksi interaksi protein HIV dengan protein manusia, yaitu dengan nilai akurasi sebesar 79,50 , sensitivitas 79,91 , spesifisitas 79,07 dan presisi sebesar 79,77 . Sementara itu, metode RF IPCA memperoleh hasil performa tertinggi yaitu dengan nilai akurasi sebesar 77,20 , sensitivitas 76,65 , spesifisitas 77,81 , dan presisi sebesar 79,40 . Selain itu pula, dalam penelitian ini ditemukan sebanyak 2.619 protein manusia yang terprediksi berinteraksi dengan protein HIV melalui model terbaik RF PCA , dan juga ditemukan sebanyak 3.071 protein manusia yang terprediksi berinteraksi dengan protein HIV melalui model terbaik RF IPCA dari total sebanyak 7.678 protein manusia yang diteliti.
ABSTRACT
HIV Human Immunodeficiency Virus is a type of retrovirus obligate intracellular that attacks the human body 39 s immune system. This virus attacks by doing interaction between virus and human proteins. This research uses data of amino acids sequence from protein that the feature will be extracted using Global Encoding. The result of feature extraction then would be used as an input for Rotation Forest in order to predict interaction between HIV and human proteins. In addition, this research also compares the performance of Rotation Forest that using Principal Component Analysis RF PCA with Independent Principal Component Analysis RF IPCA as a method of transformation in that method. The result shows that RF PCA produced highest performance in classifying protein interactions between HIV and human, with accuracy value of 79,50 , 79,91 sensitivity, 79,07 specificity and 79,77 precision. While the RF IPCA produced highest performance with 77,20 accuracy, 76,65 sensitivity, 77,81 specificity, and 79,40 precision. In addition, there are 2.619 human protein which is predicted has an interaction with HIV protein through RF PCA best model, and there are 3.071 human protein which is predicted has an interaction with HIV protein through RF IPCA best model from the total of 7.678 human protein. All of that can be found in this research.
2018
T49480
UI - Tesis Membership  Universitas Indonesia Library
cover
Arie Kriswoyo
Abstrak :
ABSTRAK

Pada tahun 2013, Badan Pusat Statistik mencatat bahwa telah terjadi 100.106 kasus kecelakaan lalu lintas di Indonesia. Sebagian besar kecelakaan disebabkan oleh faktor manusia, yaitu mengantuk. Sistem pendeteksi kantuk dikembangkan untuk mengatasi hal ini. Sistem pendeteksi kantuk dibangun menggunakan pustaka OpenCV, dengan kombinasi dari beberapa algoritma, yaitu Haar Cascade Classifier, fungsi blur, Canny dan kontur. Algoritma Haar Cascade Classifier digunakan untuk mendeteksi area wajah dan area mata pada pengemudi. Sedangkan kombinasi antara fungsi blur, canny dan kontur digunakan untuk mendeteksi objek mata dan menganalisis sedang terbuka atau tertutupnya mata. Performa sistem pendeteksi kantuk diuji melalui empat variabel, yaitu kernel size, nilai threshold, perbedaan kondisi pencahayaan dan karakteristik mata. Berdasarkan hasil pengujian, kernel size terbaik untuk mendeteksi mata adalah (4,4). Selain itu, nilai threshold terbaik untuk lower threshold dan upper threshold adalah 70-110 dan 210-240. Perbedaan kondisi pencahayaan (pagi, siang, sore dan malam) memiliki pengaruh terhadap sistem dengan tingkat kesalahan sebesar 20%. Karakteristik mata (berkacamata dan tidak berkacamata) memiliki pengaruh terhadap sistem dengan tingkat kesalahan sebesar 16,7%.


ABSTRACT

In 2013, Badan Pusat Statistik (Statistics Indonesia) recorded that 100.106 cases of traffic accident have occured in Indonesia. Mostly caused by human error, i.e. drowsiness. Drowsiness detection system is developed to respond this situation. Drowsiness detection system is built through OpenCV library by combining the Haar Cascade Classifier algorithm with blur, canny and contour function. Haar Cascade Classifier was used to detect areas of face and eyes whereas the combination of blur, canny and contour function is used to detect the driver’s eyes and analyze the open or closed driver’s eyes. The performance of drowsiness detection system was tested through four variables; kernel size, threshold value, lighting condition (morning, noon, afternoon and night) and eye’s characteristic (eyeglasses or not). Based on the experiments, the best kernel size to detect the driver’s eyes is 4,4. Then, the best lower threshold and upper threshold are 70-110 and 210-240. Subsequently the light conditions has a 20 % error rate to the system. The eye’s characteristic has a 16,7 % error rate to the system.

Fakultas Teknik Universitas Indonesia, 2015
S59879
UI - Skripsi Membership  Universitas Indonesia Library
cover
Malvin Edward
Abstrak :
Sebuah survei yang dilakukan oleh National Highway Traffic Safety Administration NHTSA memperkirakan 5.895.000 kasus kecelakaan yang terkait dengan permasalahan kantuk maupun tidur saat berkendara di jalan jalan U.S.A pada tahun 2005-2009. Dari jumlah tersebut, 83.000 kasus setiap tahunnya merupakan kecelakaan fatal, bahkan pada tahun 2014, 846 orang meningga pada kecelakaan berkendara yang berkaitan dengan kantuk. Sistem pendeteksi kantuk dikembangkan untuk mengatasi hal ini. Sistem pendeteksi kantuk dibangun menggunakan pustaka OpenCV, dengan kombinasi dari beberapa algoritma, yaitu Haar Cascade Classifier, fungsi Blur, fungsi Canny dan fungsi Kontur. Algoritma Haar Cascade Classifier digunakan untuk mendeteksi area wajah dan area mata pada pengemudi. Sedangkan kombinasi antara fungsi color thresholding dan fungsi kontur digunakan untuk mendeteksi objek mata dan menganalisis sedang terbuka atau tertutupnya mata. Kinerja sistem deteksi kantuk diuji melalui empat variabel, yaitu mesin pengolah yang berbeda, nilai ambang batas, kondisi pencahayaan dan karakteristik mata yang berbeda. Berdasarkan hasil pengujian, nilai ambang batas Vlo dan VHi terbaik adalah Vlo = 10 atau 20 dengan perbedaan VHI 10-20. Selain itu, ditemukan bahwa setiap kecepatan setiap proses bergantung pada pengolahan mesh dimana semakin baik pengolahannya. Mesin semakin cepat waktu prosesnya. Perbedaan dalam kondisi pencahayaan pagi, siang, siang dan malam berpengaruh terhadap kinerja sistem deteksi kantuk dengan tingkat kesalahan 20 , yaitu saat kondisi malam hari. Karakteristik mata berkacamata dan tanpa kacamata berpengaruh pada kinerja sistem deteksi kantuk dengan deteksi 100 tingkat keberhasilan, yaitu bila kondisi mata tertutup pada orang dengan kacamata.
survey conducted by the National Highway Traffic Safety Administration NHTSA estimates 5,895,000 cases of accidents related to sleepiness and sleep problems while driving on the U.S.A roadway in 2005 2009. Of these, 83,000 cases each year are fatal accidents, even by 2014, 846 people die in a dormant driving accident. The drowsiness detection system was developed to overcome this. The sleepiness detection system is built using the OpenCV library, with a combination of several algorithms, the Haar Cascade Classifier, the Blur function, the Canny function and the Contour function. Haar Cascade Classifier algorithm is used to detect the facial area and eye area of the driver. While the combination of color thresholding function and contour function is used to detect the eye object and analyze the open or closed eyes. The performance of the drowsiness detection system is tested through four variables, ie different processing machines, threshold values, lighting conditions and different eye characteristics. Based on the test results, the best Vlo and VHi threshold values are Vlo 10 or 20 with a VHI difference of 10 20. In addition, it was found that every speed of each process depends on mesh processing where the better the processing. The faster the machine the process time. Differences in lighting conditions morning, noon, day and night affect the performance of the drowsiness detection system with a 20 error rate, ie during nighttime conditions. Eye characteristics bespectacled and without glasses affect the performance of the drowsiness detection system with a 100 detection rate of success, ie when eye conditions are closed in people with glasses.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68630
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Ramadian Wijaya
Abstrak :
Perancangan sistem ini dibangun dengan bentuk aplikasi menggunakan kamera yang terdapat pada smartphone untuk mendapatkan citra digital lalu diolah dengan pustaka OpenCV. Pengolahan dilakukan dengan metode Haar Cascade Classifiers untuk mendapat daerah mata, lalu dengan menggunakan kontour, blur, tresholding, keadaan mata dilacak untuk mendeteksi tanda kantuk yang berupa mata tertutup. Aplikasi diuji kecepatan pengolahan dengan pengimplementasian pengembangan optimasi region of interest, nilai ambang HSV, pengaruh kondisi cahaya, dan karakteristik mata. Hasil yang didapatkan menunjukan bahwa dengan memberikan optimasi algoritma kepada sistem yang sudah ada dapat meningkatkan kecepatan pengolahan. Nilai ambang HSV optimal yang didapatkan bermulai dengan V=10 atau 20 dengan selisih tinggi 15 atau 20. Aplikasi memiliki tingkat kegagalan 11.11% pada kondisi pencahayaan dan gagal saat malam. Dari pengujian pengaruh kacamata, didapatkan tidak bahwa kacamata tidak berpengaruh besar dengan tingkat keberhasilan 94.44% untuk pengguna kacamata. ......The development of this system is built as an application that uses the camera built in smartphones to get digital images which will be processed using the OpenCV library. In the process, Haar Cascade Classifier is used to find the region of interest of the eye, which will then be tracked using contour, thresholding, and blur to detect signs of drowsiness which are closed eyes. The application is tested based on the optimization made on the algorithm, the value for HSV thresholding, the effect of light on different times, and on the characteristic of the eye. The results show that the optimization made has caused significant speed up on the processing in comparison to existing algorithm. The HSV threshold found to be the most effective is V=10 or 20 with a difference of 15 or 20 to the upper limit.  The effect of light causes 11.11% chance of failure especially when its night without lights. The characteristic of the eye, whether there are glasses or not, does not make a big difference and still has a 94.44% chance of success.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sigit Suryono
Abstrak :
ABSTRAK
Klasifikasi sentimen merupakan salah satu cabang dari text mining. Klasifikasi sentimen dapat menjadi sesuatu yang penting dalam proses evaluasi terhadap sebuah topik permasalahan. Tujuan utama dari klasifikasi sentimen adalah untuk mencari tahu polaritas dari sentimen positif, negatif dan netral. Klasifikasi sentimen salah satunya dapat diperoleh melalui tweet yang ada pada Twitter. Dalam tulisan ini, tweet yang berhubungan dengan kata kunci yang dicari dihimpun dengan menggunakan tools yaitu API Twitter. Data yang didapat dari proses penghimpunan akan diolah dengan menggunakan Natural Language Toolkit yang berjalan diatas bahasa pemrograman Python. Data selanjutnya akan dilakukan klasifikasi sentimen dengan menggunakan Naive Bayes untuk melihat sentimen yang dihasilkan. Dari proses klasifikasi yang telah dilakukan akan diukur tingkat akurasi. Dari hasil uji coba sebanyak 3 kali, didapatkan tingkat akurasi pada percobaan pertama 64.95%, kedua 66.36% dan ketiga 66.79% Hasil lain yang didapatkan dari proses klasifikasi yaitu sentimen positif 28% sentimen negatif 20% dan sentimen netral 52%. Berdasarkan hasil persentase kelas sentimen, sentimen neutral merupakan sentimen yang paling banyak apabila dikaitkan dengan topik Presiden Joko Widodo dan pemerintahannya.
Yogyakarta: Pusat Penelitian dan Pengabdian Pada Masyarakat (P3M) STTA, 2018
600 JIA X:1 (2018)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2   >>