Ditemukan 1 dokumen yang sesuai dengan query
Muhammad Habil Amardias
"Tuberkulosis merupakan salah satu penyakit yang menjadi penyebab kematian tertinggi di dunia. Penyakit tuberkulosis perlu pendeteksian dan diagnosis yang tepat. Salah satu media yang umum digunakan untuk mendeteksi penyakit tuberkulosis adalah chest x-ray. Penelitian ini menggunakan model Conditional Positional Encoding Vision Transformer dengan Convolution Stem untuk mengklasifikasi penyakit tuberkulosis pada chest x-ray. Conditional Positional Encoding Vision Transformer adalah salah satu varian dari model vision transformer yang menggunakan skema Conditional Positional Encoding. Convolution Stem untuk vision transformer adalah convolution block yang diterapkan pada vision transformer untuk meningkatkan stabilitas performa model. Data yang digunakan dalam penelitian ini diambil dari chest x-ray database yang terdiri dari data citra chest x-ray dengan label normal dan label tuberkulosis. Sebelum proses pelatihan, diterapkan enam metode preprocessing pada data citra chest x-ray untuk menyiapkan data citra sebagai input model, mulai dari Red Green Blue (RGB) to gray, contrast limited adaptive histogram equalization, gaussian blur, resize, gray to RGB, dan normalisasi. Model dilatih untuk meminimalkan loss function menggunakan metode optimasi AdamW dan stochastic gradient descent. Loss function yang digunakan dalam penelitian ini adalah fungsi binary crossentropy loss. Hasil percobaan menunjukkan model Conditional Positional Encoding Vision Transformer dengan Convolution Stem dapat mengklasifikasi penyakit tuberkulosis pada citra chest x-ray dengan baik, dengan rata-rata skor akurasi terbaik sebesar 0,990488, rata-rata skor recall terbaik sebesar 0,95757, dan rata-rata skor F1 sebesar 0,97338.
Tuberculosis is one of the diseases that cause the highest number of deaths in the world. Tuberculosis disease need proper detection and diagnosis. One of common methods used to detect tuberculosis is chest x-ray. This research uses the Conditional Positional Encoding Vision Transformer with Convolution Stem to classify tuberculosis in chest x-ray. Conditional Positional Encoding Vision Transformer is a variant of vision transformer model that uses conditional positional encoding. Convolution Stem is a convolution block applied to vision transformer model to enhance the model’s performance stability. The data used in this research is taken from a chest x-ray database consisting of chest x-ray images with normal and tuberculosis labels. Before the training process, six preprocessing methods were applied to the chest x-ray images, including Red Green Blue (RGB) to gray, contrast limited adaptive histogram equalization, gaussian blur, resize, gray to RGB and normalization, to prepare the image data as model input. The model is trained to minimize the loss function using AdamW and stochastic gradient descent. The loss function used in this research is binary crossentropy loss function. The experimental results show that Conditonal Positional Encoding Vision Transformer with Convolution Stem can classify tuberculosis in chest x-ray images effectively, with an average best accuracy score of 0,990488, an average best recall score of 0,95757, and an average F1 score of 0,97338."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library