Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Endah Choiriyah
"ABSTRAK
The quality of journals in Indonesia is much criticized; however, the number of Indonesian journals that meet the criteria of Directory of Open Access Journal (DOAJ) is quite a lot. This study describes some facts of Indonesias publications based on DOAJ and World Bank data. Data Collection Method. Some filtering processes in DOAJ database were done based on sum of journals, scientific fields distribution, and Article Processing Charge (APC). Open data regarding research funds among countries in World Bank database were analyzed.Data Analysis. This study used quantitative descriptive design with frequency analysis technique. Data visualization was done with R Statistical Computing and Google Sheets.Results and Discussions. In March 2017, there were 500 Indonesian journals (5th rank worldwide); 420 of them were in Indonesian covering more than 51,000 articles (7th rank). The top three fields were: education, Islam religion, as well as business and commerce. As much as 70% of the journals were free of APC. Science must prioritize inclusiveness and equality inline with the principles of originality and honesty.Conclusions. This study concludes that open access journals in Indonesia improves the accessibility, quality, and relevance of Indonesian research, which can be reused by communities, industries, and the government."
Yogyakarta: Perpustakaan Universitas Gajah Mada, 2018
BIPI 14:2 (2018)
Artikel Jurnal  Universitas Indonesia Library
cover
Lathifah Alfat
"Dalam peminjaman uang atau kredit, financial trustworthiness adalah suatu elemen penting dalam menentukan kepercayaan dan resiko finansial seseorang. Institusi pemilik produk kredit menggunakan pemeringkatan kredit untuk menilai financial trustworthiness sebelum memberikan kredit. Masalah muncul ketika seseorang yang tidak memiliki riwayat keuangan tidak bisa dikenali oleh sistem pemeringkatan kredit sehingga pengajuan kredit mereka beresiko tertolak. Di lain sisi, keberadaan smartphone diperkirakan akan menghubungkan sekitar 73% penduduk di negara-negara Asia di tahun 2025. Maka, smartphone dapat menjadi alat untuk mengakses perilaku seseorang. Setelah melibatkan seratus sembilan puluh delapan responden menjawab tiga puluh satu pertanyaan dalam survei perilaku penggunaan smartphone, diperoleh sebelas pertanyaan paling berpengaruh dengan 70.4% variansi. Survei baru yang dilakukan pada 714 orang menjawab sebelas pertanyaan yang digunakan untuk memodelkan financial trustworthiness. Dalam tesis ini, pemodelan financial trustworthiness memanfaatkan metode machine learning dalam dunia keuangan. Pemodelan dilakukan menggunakan bahasa pemrograman Python yang dikerjakan pada Jupyter Notebook, bagian dari software pengolah data Anaconda. Dilakukan pemisahan data menjadi training set dan testing set dengan pembagian 80:20 masing-masing. Kemudian beberapa algoritma diujikan untuk mengetahui performanya. Hasil penelitian menunjukan ke empat algoritma dinyatakan model yang baik dengan performa lebih dari 0,8. Logistic Regression menunjukan akurasi 0,874, presisi 0,90, recall 0,87. Sedangkan Decision Tree dengan akurasi 0,967, presisi 0,97, recall 0,97. Pada SVM menunjukan akurasi 0,825, presisi 0,83, recall 0,83. Sementara Naïve Bayes memiliki nilai presisi 1,00, akurasi 1,00, recall 1,00. Hal ini menjadikan algoritma Naïve Bayes memiliki performa paling baik dan sempurna.

In money lending or credit, financial trustworthiness is an important element in deciding the trust and financial risk of a person. Financial institution with credit product, uses credit rating measure for financial trustworthiness before giving the credit. Problem arises when people whith no financial history is unrecognized by the credit rating system, then their credit application is in the risk of being rejected. On the other side, prediction says that smartphone will connect approximately 73% of Asian countries citizen in 2025. Therefore, smartphone could become a device to access peoples behavior. We involved one hundred ninety eight respondents to answer thirty one questions on smartphone usage behavior. The survey generates eleven most influencial questions with 70.4% variance. Then, the new survey was conducted to 714 people who answers eleven questions used to model the financial trustworthiness. In this thesis, we present a financial trustworthiness model implementing machine learning method in financial world. In our proposed work, we use Python programming language which works in Jupyter Notebook, and the part of data processing software Anaconda. The next stage is data splitting into training set and testing set with partition of 80:20 each part. Subsequently, some algorithms were tested to compare the performance. The research result shows four algorithm stated as good model with performance more than 0.8. Logistic Regression shows accuracy of 0.874, precision of 0.90, recall of 0.87. While Decision Tree with accuracy of 0.967, precision of 0.97, recall of 0.97. In SVM display accuracy of 0.825, precision of 0.83, recall of 0.83. Meanwhile, Naïve Bayes has a precision of 1.00, accuracy of 1.00, recall of 1.00. This made Naïve Bayes algorithm as the best and perfect in performance."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T55086
UI - Tesis Membership  Universitas Indonesia Library
cover
Amirah Anas
"Penelitian ini bertujuan untuk menganalisis pengaruh credit rating terhadap struktur modal pada perusahaan non-keuangan yang terdaftar di Bursa Efek Indonesia periode 2006-2012. Pengujian ini dilakukan menggunakan metode regresi data panel, dimana variabel dependen adalah net debt issued (NetDIss) atau hutang yang diterbitkan setelah dikurangi ekuitas sebagai proksi struktur modal, sedangkan credit rating sebagai variabel independen diproksikan sebagai variabel dummy. Metodologi yang digunakan adalah Plus or Minus Test, Credit Score Test, dan Investment Grade Non-Investment Grade Test. Hasil penelitian menunjukkan bahwa credit rating berpengaruh signifikan terhadap struktur modal. Dimana, berdasarkan pengujian POM test didapatkan hasil bahwa credit rating yang mendekati peningkatan (upgrade) dan penurunan (downgrade) berpengaruh signifikan terhadap struktur modal. Investment Grade Non-Investment Grade test juga menunjukkan hasil bahwa credit rating yang berada pada batas kategori investment grade non-investment grade berpengaruh signifikan terhadap struktur modal. Sedangkan, Credit Score test menunjukkan hasil bahwa credit rating tidak berpengaruh signifikan terhadap struktur modal perusahaan non-keuangan di Indonesia.

The aim of this study is to analyze the effect of credit ratings on non-financial firm?s capital structure that are listed in Indonesian Stock Exchange during the period of 2006 to 2012. Hypotheses were tested using the estimation method of panel data, whereby net debt (NetDIss) was selected as dependent variable and credit rating as independent variable. The methods used in this study are the Plus or Minus Test, the Credit Score Test, and the Investment Grade Non-Investment Grade Test. Analysis revealed that credit rating has a significant effect on capital structure. The POM test showed that credit rating that is nearing an upgrade and downgrade has a significant effect on capital structure. Moreover, Investment Grade Non-Investment Grade test showed that credit rating that was in borderline has a significant effect on capital structure too. But, Credit Score test did not showed the significant effect of credit rating on capital structure, while others did."
Depok: Universitas Indonesia, 2015
S60257
UI - Skripsi Membership  Universitas Indonesia Library