Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 12 dokumen yang sesuai dengan query
cover
Richiditya Hindami
"Pada tahun 2016, terdapat 2.519 desa di Indonesia yang belum mendapatkan kebutuhan energilistrik. Turbin Pikohidro dapat menjadi salah satu solusi yang memungkinkan karena biayainvestasi yang murah, pekerjaan sipil yang sedikit, dan perawatan yang mudah dibandingkanSolar PV dan turbin angin. Turbin cross-flow adalah turbin impuls yang memiliki kelebihanseperti efisiensi yang stabil dalam berbagai kondisi debit, konstruksi sederhana, dan baik dalamskala portabilitas. Studi ini akan mengkaji pengaruh kelengkungan sudu terhadap performaturbin menggunakan metode Computational Fluid Dynamic. Variasi sudu dibuat menjadi rasiokelengkungan terhadap panjang sudu Rs/Ts diantaranya 0 ; 0,08 ; 0,17 ; dan 0,26. Berdasarkanhasil verifikasi, model turbulen RNG k - dipilih untuk mempredikasi pola aliran yang terjadikarena memiliki error yang lebih rendah dibandingkan dengan yang lain. Selain itu, modelturbulen k - RNG banyak dikembangkan pada studi impeler cross-flow baik mesin tenagamaupun kerja. Hasil komputasi mendapatkan sudu dengan rasio Rs/Ts = 0,08 menghasilkanefisiensi yang lebih stabil dan tinggi diduga karena olakan yang terjadi lebih kecil dibandingkanyang lain, sehingga sudu dengan rasio Rs/Ts = 0,08 direkomendasikan untuk digunakan padakondisi tinggi jatuh 2,71 meter dan debit 41 l/s.
......In 2016, approximately 2.519 village in Indonesia still didn rsquo t have sufficient access toelectricity. Picohydro turbine can be a proper solution because it has a low investation cost, few civil work, and easy to maintain compared to Solar PV and Wind Turbine. Cross flow isan impulse turbine that has an advantage such as stable efficiency in variable dischargecondition, simple construction, and high portability. To increase cross flow turbineperformance, this study will investigate the effect of blade curvature to the turbine efficiencywith CFD method. The blade variation will be stated as blade curvature to chord length ratio Rs Ts which consist of 0 0,08 0,17 and 0,26. Based on verification test, the k RNGturbulence model was chosen to predict flow pattern because it has a lower error compared toother turbulence model and the turbulence model has been commonly used in cross flowimpeller both on fan and turbine. The Resulted showed that blade with Rs Ts 0,08 yield thehighest efficiency because the it has the lower vortex compared to others. Therefore, the bladewith Rs Ts equal to 0,08 is recomended to use in condition of head 2,71 meter and discharge41 l/s."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ramdani
"Dengan semakin mahal dan terbatasnya sumber energi sementara kebutuhan energi listrik menjadi kebutuhan vital, semakin dituntut pengernbangan energi yang lebih efisien dengan biaya yang relatif murah. Perancangan pembangkit Iistrik semakin ditingkatkan untuk pemenuhan kebutuhan Iistrik yang semakin meningkat selaras dengan berkembangnya teknologi dan rekayasa teknik yang membutuhkan listrik, contohnya untuk panerangan dan industri kecil, yang selanjutnya dapat digunakan sebagai pengernbangan ekonomi suatu daerah. Solusi yang paling potensial bagi negara berkembang, khususnya Indonesia adalah pemanfaatan Pembangkit Listrik Tenaga Air (PLTA). Turbin cross flow sangat cocok bila digunakan sebagai penggerak utama untuk proyek hidro yang kecil. Bentuk desain yang sederhana menyebabkan mudah untuk dimengerti cara kerjanya, dan mudah pula dibuat dl bengkel-bengkel kecil. Selain itu, untuk head yang rendah, turbin air tipe cross How dapat menghasilkan daya yang lebih besar dibandingkan dengan turbin pelton. Tulisan ini berisi perancangan awal dari roda gerak turbin air cross flow jenis Banki. Perhitungan berawal dari data head dan debit air yang mengalir, serta beberapa asumsi yang ditetapkan Sebalum perancangan. Roda gerak turbin Cross flow mempuyai dua bagian utama, yaitu sudu gerak dan cakram. Sudut gerak berfungsi memindahkan energi kinetik aliran air menjadi energi putaran. Sudu-sudu ini berbentuk kurva dan dipasang tetap pada cakramnya, sejajar dengan surnbu poros turbin_ Sudu dibentuk sedemikian rupa agar apabila air meninggalkan sudu, aliran akan tetap mempunyai energi kinetik yang cukup berarti. Jadi pancaran air akan melalui sudu gerak dua kali."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S37268
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sumarlin Hari Wibowo
"Turbin cross flow merupakan salah satu pembangkit daya alternatif yang mudah dibuat dan murah harganya. Kemampuan turbin cross flow dalam menghasilkan daya yang cukup besar dengan energi berupa aliran air menjadikannya cocok untuk digunakan di Indonesia, baik untuk di desa-desa yang belum terjamah listrik ataupun di perkotaan. Penelitian yang dilakukan terhadap turbin cross flow saat ini berkatian dengan upaya meningkatkan efisiensi turbin. Metode yang umum digunakan adalah dengan membuat casing yang menyelubungi turbin. Cara ini walaupun efektif tetapi juga cukup sulit untuk dimanufaktur sehingga menyebabkan tambahan biaya yang signifikan dalam pembuatan turbin. Alternatif lain untuk meningkatkan efisiensi turbin dan menjaganya tetap cost effective adalah dengan membuat runner tak berporos yang bertujuan untuk memaksimalkan aliran air di dalam runner.
......
Cross Flow Turbine is one of the alternative power plant that cheap and easy to build. It's ability to generate decent power from water flow energy makes it suitable to be used in Indonesia, whether it in remote areas or cities. The current research about Cross Flow Turbine is focused on increasing the efficiency of turbine. The common method to increasing turbine efficiency is done by making a case that envelope the turbine. Eventough this method is effective but it's difficult to manufacture, then increasing a significant cost in turbine production. Another alternative method to increasing turbine efficiency and keep it cost effective is done by making unshafted runner to maximize the water flow in the runner."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S53086
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tresna Priyana Soemardi
"ABSTRAK
Turbin mikrohidro cross flow dengan inovasi fabrikasi dan bahan komposit menjadi fokus studi ini.
Tujuan keseluruhan adalah memperoleh kinerja keseluruhan yang baik pada aspek design sampai pada pengoperasiannya.
Hasil menunjukkan mikrohidro yang dikembangkan masih cukup rendah output dan efisiensi, hal-hal ini dikaji dalam studi ini untuk pengembangan lebih baik.

ABSTRACT
Cross-flow water turbine and using of composite materials are the focus of this study.
The overall objective is to obtain the high performance in all aspect of design and fabrication. The results have shown the advantages of this microhydro power plant, at the other side there are still problem which influence the efficiency
"
Depok: Fakultas Teknik Universitas Indonesia, 1998
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Celine Kevin
"Rasio elektrifikasi Indonesia pada tahun 2018 mencapai 98.3%. Dimana persentase sebesar 38.1% berasal dari daerah terpencil di NTT. Daerah terpencil merupakan daerah yang memiliki rasio elektrifikasi rendah. Turbin pikohidro jenis arus lintang merupakan salah satu solusi yang memungkinkan karena biaya investasi yang murah, perawatan yang sederhana, dan kemudahan manufaktur. Turbin arus lintang adalah turbin tipe impuls yang memiliki kelebihan seperti efisiensi yang stabil dalam berbagai kondisi debit, konstruksi sederhana, dan baik dalam skala portabilitas dan modularitas. Studi ini akan mencari nilai kedalaman sudu yang optimum. Variasi dibuat menjadi rasio kelengkungan terhadap panjang sudu (T/R) diantaranya 0.08, 0.12, dan 0.16. Untuk meningkatkan performa turbin cross flow studi ini akan merancang bentuk nosel baru dengan menggunakan perhitungan geometri dan CFD. Simulasi akan dijalankan dengan menggunakan fitu 6-DoF dan menggunakan kondisi batas debit aliran 12.8 l/s dan tinggi jatuh 2.1 m. Selanjutnya ukuran timestep yang digunakan adalah 0.001. Hasil komputasi mendapatkan efisiensi maksimum sebagai berikut T/R = 0.08 sebesar 7.22%, T/R = 0.12 sebesar 2.9 %, dan T/R = 0.16 sebesar 3.3%. Sudu dengan T/R= 0,08 menghasilkan efisiensi yang lebih tinggi karena lebih banyak jumlah air yag menumbuk sudu. Sedangkan, untuk optimalisasi performa turbin dengan merancang nosel, menunjukkan bahwa nilai λ = 50o menghasilkan efisiensi yang lebih baik dibandingkan dengan variasi nilai λ lainnya. Nilai efisiensi maksimum yang dicapai pada λ = 50o adalah 60.60%. Sedangkan untuk nilai λ lainnya efisiensi maksimum yang dicapai berturut-turut mulai dari λ = 60o-90o adalah 49.19%; 42.70%; 36.66%; dan 40.41%.Dengan demikian sudu dengan rasio T/R sebesar 0,08 dan nosel dengan λ = 50o direkomendasikan untuk digunakan pada debit aliran 12.8 l/s dan kondisi tinggi jatuh 2,1 meter .

Rasio elektrifikasi Indonesia pada tahun 2018 mencapai 98.3%. Dimana persentase sebesar 38.1% berasal dari daerah terpencil di NTT. Daerah terpencil merupakan daerah yang memiliki rasio elektrifikasi rendah. Turbin pikohidro jenis arus lintang merupakan salah satu solusi yang memungkinkan karena biaya investasi yang murah, perawatan yang sederhana, dan kemudahan manufaktur. Turbin arus lintang adalah turbin tipe impuls yang memiliki kelebihan seperti efisiensi yang stabil dalam berbagai kondisi debit, konstruksi sederhana, dan baik dalam skala portabilitas dan modularitas. Studi ini akan mencari nilai kedalaman sudu yang optimum. Variasi dibuat menjadi rasio kelengkungan terhadap panjang sudu (T/R) diantaranya 0.08, 0.12, dan 0.16. Untuk meningkatkan performa turbin cross flow studi ini akan merancang bentuk nosel baru dengan menggunakan perhitungan geometri dan CFD. Simulasi akan dijalankan dengan menggunakan fitu 6-DoF dan menggunakan kondisi batas debit aliran 12.8 l/s dan tinggi jatuh 2.1 m. Selanjutnya ukuran timestep yang digunakan adalah 0.001. Hasil komputasi mendapatkan efisiensi maksimum sebagai berikut T/R = 0.08 sebesar 7.22%, T/R = 0.12 sebesar 2.9 %, dan T/R = 0.16 sebesar 3.3%. Sudu dengan T/R= 0,08 menghasilkan efisiensi yang lebih tinggi karena lebih banyak jumlah air yag menumbuk sudu. Sedangkan, untuk optimalisasi performa turbin dengan merancang nosel, menunjukkan bahwa nilai λ = 50o menghasilkan efisiensi yang lebih baik dibandingkan dengan variasi nilai λ lainnya. Nilai efisiensi maksimum yang dicapai pada λ = 50o adalah 60.60%. Sedangkan untuk nilai λ lainnya efisiensi maksimum yang dicapai berturut-turut mulai dari λ = 60o-90o adalah 49.19%; 42.70%; 36.66%; dan 40.41%.Dengan demikian sudu dengan rasio T/R sebesar 0,08 dan nosel dengan λ = 50o direkomendasikan untuk digunakan pada debit aliran 12.8 l/s dan kondisi tinggi jatuh 2,1 meter ."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pangaribuan, Pontas
"Dalam suatu masyarakat tradisional, khususnya petani, pengeringan padi hasil panen biasanya hanya mengandalkan panas dari sinar matahari. Pengeringan padi dengan cara seperti ini akan mengalami kendala yang cukup besar apabila pada saat panan terjadi musim hujan. Untuk mengatasi hal ini perlu dipikirkan sualu sumber panas altematif yang berfungsi menggantikan panas matahari.
Pemanfaatan penukar kalor (heat exchangeg) sebagai sumber panas, dengan memanaskan udara hingga 60-7O°C, merupakan salah satu alternatif yang dapat digunakan untuk mengeringkan padi tersebut. Bentuk penukar kalor ini diusahakan sesederhana mungkin agar dapat dapat dibuat oleh kalangan luas, dengan bahan dengan konduktifitas yang tinggi, akan tetapi banyak terdapat di pasaran. Bentuk penukar kalor pelat paralel, aliran lintang (cross flow), satu lintas (single pass), kedua fluida tidak bercampur (unmixed) dengan bahan aluminium yang banyak terdapat dipasaran dapat dimanfaatkan sebagai sebagai sumber panas. Penambahan sirip-sirip (fin) pada kedua fluida akan menambah kemampuan penukar kalor dalam menambah laju perpindahan kalornya (q).
Untuk mengetahui karakteristik (unjuk kerja) penukar kalor ini, perlu diadakan pengujian untuk mengetahui parameter-parameter seperti laju aliran volume fluida, suhu masuk gas, suhu keluar gas, suhu masuk udara dan suhu keluar udara. Dalam pengujian fluida panas yang digunakan adalah gas hasil pembakaran batubara dan fluida dinginnya adalah udara. Pengujian dilakukan dengan mengubah jumlah batubara yang digunakan data-data pengujian ini diolah dan disajikan dalam bentuk tabel hasil perhitungan dan grafik-grafik hubungan."
Depok: Fakultas Teknik Universitas Indonesia, 2000
S37630
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teuku Ghaisa Aufa
"ABSTRAK
Penggunaan cross flow fan CFF sebagai propulsi vertical take off and landing VTOL pada pesawat terbang telah diteliti oleh banyak pihak. Umumnya CFF yang diteliti memiliki bentuk desain yang sama. Pada penelitian ini, CFF dimodifikasi dengan penambahan silinder di tengah fan. Dengan penambahan tersebut maka sumber gaya angkat tidak hanya berasal dari outlet namun juga dari silinder. Pada intinnya, penambahan silinder tersebut diharapkan dapat meningkatkan gaya angkat yang dihasilkan oleh CFF. Metode penelitian yang digunakan adalah dengan menggunakan simulasi Computational Fluid Dyanamics CFD dengan perangkat lunak ANSYS CFX. CFF yang diteliti memiliki diameter 80 mm dengan lebar 200 mm dan memiliki jumlah sudu sebanyak 26 buah. Penelitian ini menggunakan empat variasi model. Keempat model tersebut adalah CFF biasa, CFF termodifikasi, CFF termodifikasi dengan silinder 24 mm, dan CFF termodifikasi dengan silinder 32 mm. Model-model tersebut kemudian disimulasikan dengan dua tipe variasi. Pertama, pada kondisi kecepatan sudu dan silinder yang sama, dari kecepatan 4000 RPM hingga 8000 RPM. Dan kedua, pada kondisi kecepatan sudu dan silinder yang berbeda, dari kecepatan silinder -8000 RPM hingga 16000 RPM. Hasil simulasi menunjukkan bahwa performa CFF dengan penambahan silinder memiliki gaya angkat yang lebih baik dibanding dengan yang tidak. Dibandingkan dengan CFF biasa, CFF dengan silinder menghasilkan gaya angkat 9,1 lebih tinggi. Jika silindernya memiliki kecepatan dua kali kecepatan sudu, maka gaya angkatnya dapat meningkat hingga 34 . Dengan performa seperti itu, maka CFF dengan silinder memiliki potensi untuk dijadikan propulsi vertikal.

ABSTRACT
The use of cross flow fan CFF as vertical take off and landing VTOL propulsion has been studied by many researchers. Generally, the studied CFF has a same design. In this research, CFF is modified with the additional of cylinder at the center of the fan. By adding cylinder, the source of lift will not only generated from outlet but also from cylinder. Concisely, the additional of cylinder is expected to increase the lift of CFF. The research method uses Computational Fluid Dynamics CFD with software ANSYS CFX. The studied CFF model has 80 mm diameter with 200 mm span and has 26 blades. This research uses four model variations. The variations are a common CFF, a modified CFF, a modified CFF with 24 mm cylinder, and a modified CFF with 32 mm cylinder. Those models will be simulated in two variations. Firstly, a condition with the blades and cylinder rotated in a same speed, from 4000 RPM to 8000 RPM. Secondly, a condition with the blades and cylinder rotated in different speed, from 8000 RPM to 16000 RPM. The result of simulation shows that the addition of cylinder will give a better lift than the common one. Compared to the common CFF, the CFF with cylinder will generated a better lift about 9,1 higher. If the cylinder speed is increased twice to the blades speed, the lift will be increasing to 34 higher. With those kind of performance, then CFF with cylinder has potential to be a vertical propulsion device."
2016
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aji Putro Prakoso
"ABSTRAK
Daerah pedesaan terpencil mengakibatkan pembangunan jaringan listrik terpusat menjadi mahal dan tidak efisien. Untuk daerah terpencil yang memiliki aliran sungai yang cukup deras, direkomendasikan untuk membangun pembangkit listrik piko hidro run-off-river sebagai sumber energi untuk jaringan listrik mandiri mereka yang dapat menghasilkan listrik yang cukup untuk desa kecil dengan biaya investasi yang rendah. Turbin jenis cros-flow Banki sudah dikenal akan kesederhanaan dalam bentuk, rancangan, serta konstruksinya. Hal ini menyebabkan biaya konstruksi turbin tipe menjadi lebih murah dibandingkan dengan turbin lain seperti propeler dan Pelton. Selain itu, hal tersebut membuat turbin jenis ini lebih mudah diperbaiki ditambah kemampuan membersihkan diri dari turbin ini. Selain kelebihan tersebut turbin ini juga memiliki efisiensi yang cukup stabil meskipun debit aliran air yang masuk fluktuatif. Di sisi lain, turbin cross-flow memiliki efisiensi maksimum yang lebih rendah dibanding turbin lain seperti propeler dan Pelton. Gaya hambat biasanya akan muncul pada aliran fluida yang melalui benda tercelup, seperti sudu turbin, disebabkan karena terbentuknya pusaran. Gaya ini biaunya akan mengurangi efisiensi turbin. Konsep airfoil sudah terbukti dapat mengurangi gaya drag sehingga dapat meningkatkan efisiensi beberapa turbin. Studi kali ini bertujuan untuk mengetahui efek konsep airfoil NACA di sudu turbin cross-flow pada efisiensinya. Pada studi kali ini, NACA-6712 digunakan sebagai profil sudu turbin karena memiliki koefisien gaya lift paling besar dibandingkan dengan semua profil yang lain. Studi kali ini membandingkan turbin cross-flow yang menggunakan sudu dengan konsep NACA-6712 dengan turbin yang menggunakan sudu biasa menggunakan simulasi CFD. Studi ini menggunakan tinggi tekan 2.7 meter dan debit aliran air 0.04 m3/s. ANSYS FLUENT 15 dengan permodelan turbulen SST digunakan dalam studi ini. Hasil studi kali ini adalah simulasi CFD mendapatkan bahwa efisiensi maksimum turbin yang menggunakan sudu biasa adalah 95 dengan jumlah sudu 30 buah, sedangkan turbin yang menggunakan sudu dengan konsep NACA-6712 memiliki efisiensi maksimal 91.7 dengan jumlah sudu 25 buah. Dari hasil tersebut dapat disimpulkan bahwa turbin cross-flow dengan sudu biasa memiliki efisiensi yang lebih baik daripada yang menggunakan konsep NACA-6712.

ABSTRACT
Isolated rural area makes on grid electrification development becomes expensive and inefficient. For rural area with quite torrential river flow, it is recommended to build run of river pico hydro power plant for their mini grid power system to produce enough electricity for small village with low investment cost. Cross flow Banki turbine is well known for its simplicity of shape, design, and construction. Thus, the construction cost of this type of turbine is very low rather than another turbine like propeller and Pelton. Moreover, it also makes cross flow Banki turbine easier to maintain, moreover this turbine has self cleaning ability. Furthermore, cross flow Banki turbine is well known for its independent efficiency from fluctuation of water discharge. Beside of many advantage on this turbine, cross flow Banki turbine efficiency is relatively lower than another turbine. The drag force usually present when water flowing around immerse body, like turbine blade because of eddy formation. This force usually reduces the turbine efficiency. Airfoil profiles are proven to reduce eddy formation in water flow around immerse body like turbine blade then increase some turbine efficiency. This study aims to investigate the effect of NACA airfoil in blade profile to the cross flow turbine efficiency. NACA 6712 airfoil profile was chosen because it has bigger lift coefficient than others. In this study, the turbine with NACA 6712 airfoil profiled blade cross flow turbine has been compared with ordinary one by using CFD simulation. This study uses 2.7 m head and 0.04 m3 s of water discharge. ANSYS FLUENT 15 with SST turbulence model is used in this study. As a result, CFD simulation found that maximum efficiency of ordinary blades turbine is 95 with number of blades 30. While, the maximum efficiency of NACA 6712 turbine is 91.7 with 25 blades. From the results, it can be obtained that the ordinary turbine is better than NACA 6712 turbine."
2017
S67177
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gun Gun Ramdlan Gunadi
"Berdasarkan laporan United Nations Environment Programme (UNEP, 2011) sektor konstruksi menempati urutan pertama sebagai penyumbang polusi dan emisi gas rumah kaca terbesar di dunia. UNEP juga menyampaikan informasi bahwa sepertiga dari total penggunaan energi dunia dikonsumsi di gedung-gedung. Untuk meredusir penggunaan energi tersebut, diperkenalkan bangunan hijau (green building) yang memiliki konsep Zero Energy/Emission Building (ZEB) sebagai solusi untuk mengurangi efek emisi gas. Fitur utama dari bangunan hijau adalah efisiensi energi dan optimasi pemanfaatan sumber energi baru-terbarukan.
Turbin sebagai pembangkit daya merupakan salah satu peralatan utama pada sistem pembangkit energi. Turbin yang digunakan sebagai pembangkit energi pada bangunan hijau dalam studi ini adalah turbin air arus lintang (cross-flow). Penelitian pengembangan model turbulen dinamika aliran pada runner turbin cross-flow bertujuan untuk mendapatkan efisiensi yang terbaik melalui optimasi numerik pada CFD. Model Renormalization Group (RNG) k-e memiliki akurasi numerik lebih baik dari model k-e, akan tetapi membutuhkan waktu numerik yang lebih lama dibanding model k-e. Dinamika aliran pada runner turbin cross-flow memiliki beberapa zona penting, diantaranya daerah blade turbin cross-flow. Optimasi numerik dilakukan dengan modifikasi nilai Prandtl model k-e untuk optimasi waktu dan akurasi numerik. Modifikasi nilai Prandtl model k-e dibandingkan dengan model RNG k-e untuk mendapatkan nilai ok dan oe yang memiliki simpangan rata-rata yang kecil pada parameter fisika dan turbulen. Hasil simulasi dinamika aliran pada tingkat pertama blade turbin air cross-flow dengan perubahan nilai konstanta ok model k-e mendapatkan nilai simpangan rata-rata yang besar dibandingkan model RNG k-e pada parameter fisika; distribusi tekanan dan kecepatan, serta untuk parameter turbulen; energi kinetik turbulen, laju disipasi turbulen, dan viskositas efektif turbulen.
Perubahan nilai konstanta oe model k-e mendapatkan nilai simpangan rata-rata yang kecil dibandingkan model RNG k-e pada parameter fisika dan turbulen. Modifikasi model k-e dengan perubahan nilai konstanta oe=0,47 dan ok=1 memiliki simpangan rata-rata pada parameter; tekanan 9%, kecepatan 2%, energi kinetik turbulen 0%, laju disipasi turbulen 4%, dan viskositas efektif turbulen 1%. Nilai konstanta oe=0,47 dan ok=1 direkomendasikan untuk mendapatkan nilai simpangan yang kecil dibandingkan model RNG k-e
......Based on the report "United Nations Environment Program (UNEP, 2011)" the construction sector ranks first as the largest contributor to pollution and greenhouse gas emissions in the world. UNEP also conveyed information that a third of the world's total energy use is consumed in buildings. To reduce energy use, green building was introduced with the concept of Zero Energy/Emission Building (ZEB) as a solution to reduce the effects of gas emissions. The main characteristics of green buildings are energy efficiency and optimization of the use of new and renewable energy sources.
Turbine as a power plant is one of the main equipment in the energy generation system. The turbine used for energy generation in the green building in this study is a cross-flow water turbine. Research on the development of turbulent flow dynamics model on a cross-flow turbine runner aims to get the best efficiency through numerical optimization on CFD. The k-ε Renormalization Group (RNG) model has better numerical accuracy than the k-ε model, but requires a longer numerical time than the k-ε model. The flow dynamics of the cross-flow turbine runner has several important zones, including the area of ​​the cross-flow turbine blade. Research on the development of turbulent models on flow dynamics in cross-flow turbine blades is important for numerical optimization. Numerical optimization is done by modifying the Prandtl value of the k-ε model for time optimization and numerical accuracy. Modify the Prandtl value of the k-ε model compared to the RNG k-ε model to get the value and which has a small average deviation of the physical and turbulent parameters. The results of the flow dynamics simulation on the first stage of the cross-flow turbine blade with changes in the constant value of the k-ε model get a large average deviation value compared to the k-ε RNG model on physical parameters; distribution of pressure and velocity, as well as for turbulent parameters; turbulent kinetic energy, turbulent dissipation rate, and turbulent effective viscosity.
Changes in the constant value of the k-ε model get a small average deviation value compared to the k-ε RNG model on physical and turbulent parameters. Modification of the k-ε model with changes in the constant values ​​= 0.47 and = 1 has an average deviation of the parameters; 9% pressure, 2% velocity, 0% turbulent kinetic energy, 4% turbulent dissipation rate, and 1% turbulent effective viscosity. Constant values ​​= 0.47 and = 1 are recommended to get a smaller deviation value compared to the k-ε RNG model
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Aji Putro Prakoso
"Listrik daerah pedesaan yang terisolasi merupakan masalah yang sangat krusial untuk menyelesaikan masalah rasio elektrifikasi di Indonesia. Dibandingkan dengan opsi lain, turbin piko hidro cross-flow (CFT) adalah pilihan yang lebih baik untuk menyediakan daya listrik untuk daerah pedesaan yang terisolasi. Studi untuk meningkatkan kinerja CFT dapat secara analitik, numerik, eksperimental, atau kombinasi metode-metode tersebut. Namun, perkembangan teknologi komputer membuat studi simulasi numerik menjadi semakin sering. Temuan studi CFT yang dilakukan sebelum abad ke-21 terkait dengan parameter desain utama CFT seperti tinggi nosel, sudut serang, sudut pelepasan, atau rasio diameter. Kemudian, pengembangan pendekatan computational fluid dynamic (CFD) diprakarsai oleh Patankar pada tahun 1980 yang mengembangkan penyelesaian masalah aliran fluida numerik berbasis staggered grid, metode diskritisasi upwind orde pertama dan metode Semi Implicit Method for Pressure Linked Equation (SIMPLE). Setelah pengembangan pendekatan CFD cukup matang pada awal abad ke-21, pengembangan CFT menjadi lebih halus dengan modifikasi yang kecil namun efektif. Studi ini telah menghasilkan bahwa model turbulensi yang direkomendasikan untuk simulasi CFD CFT 2D adalah k-E. Disarankan juga untuk menggunakan pendekatan unsteady 6-DOF daripada pendekatan lainnya yang telah ditemukan sebelumnya. Simulasi CFD pada kasus dalam studi ini menggunakan model turbulensi k-E dan pendekatan 6-DOF menghasilkan galat relatif rata-rata 2,99 0,40 dari hasil eksperimen.
......Isolated rural area electricity was very crucial issue to resolve electrification ratio problem in Indonesia. Compared to other options pico hydro cross-flow turbine (CFT) is the better option to provides electrical power for isolated rural area. Studies to improve CFT performance can be undertaken analytically, numerically, experimentally, or combination of those methods. However, the development of computer technology makes numerical simulation studies has becoming increasingly frequent. The finding of CFT studies conducted before 21st century were related to the main design parameter of CFT e.g. nozzle height, angle of attack, discharge angle, or diameter ratio. Then, the computational fluid dynamic (CFD) approach development was initiated by Patankar in 1980 who develop staggered grid based numerical fluid flow problem solving, first order upwind discretization method and Semi Implicit Method for Pressure Linked Equation (SIMPLE) method. After CFD approach development has mature enough at the beginning of 21st century, the development of CFT becoming finer with small but effective modification. This study has resulting that the recommended turbulence model for CFT 2D CFD simulation is k-E. It is also recommended to use 6-DOF unsteady approach instead of other prior approach. The CFD simulations and experiment testing using reccomended turbulence model and unsteady approach produced an average relative error of 2.99 0.40."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T55211
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>