Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Joyce Eliza Tiurmauli
"Pada penelitian ini akan dijelaskan sebuah distribusi yang bernama distribusi Beta Pareto. Distribusi tersebut merupakan distribusi yang dibangun oleh distribusi Beta-Generated dengan mengkombinasikan distribusi Beta dan distribusi Pareto. Selain proses pembentukan distribusi Beta Pareto, karakteristik distribusi Beta Pareto yang meliputi fungsi kepadatan peluang, fungsi ditribusi, momen ke-r, momen sentral ke-r, mean, variansi, perilaku limit, serta karakteristik lainnya dari distribusi Beta Pareto juga akan dibahas pada penelitian ini. Distribusi Beta Pareto sendiri memiliki kelebihan pada fungsi kepadatan probabilitas nya yang berbentuk monoton turun dan unimodal. Selain itu, distribusi ini juga dapat memodelkan data yang heavy-tailed. Untuk penaksiran parameter dari distribusi Beta Pareto akan digunakan metode Maximum Likelihood Estimation dan hasil akhirnya akan diperoleh dengan metode numerik. Sebagai ilustrasi, akan digunakan data severitas klaim dari asuransi kendaraan bermotor yang akan dimodelkan dengan distribusi Beta Pareto. Akan ditunjukkan dengan perbandingan nilai AIC dan BIC bahwa distribusi Beta Pareto mampu memodelkan data severitas klaim dari asuransi kendaraan bermotor lebih baik dari distribusi Pareto.

In this study, a distribution called the Beta Pareto distribution will be introduced. This distribution is a distribution builtby the Beta-Generated distribution by combining the Beta distribution and the Pareto distribution. In addition, beside the process of forming the Beta Pareto distribution, the characteristics of the Beta Pareto distribution which include theprobability density function, distribution function, rth moment, rth central moment, mean, variance, behavior limit, and other characteristics of the Beta Pareto distribution will also be explained in this research. The Beta Pareto distribution itself has the advantage of its probability density function which not only have decreasing shape but also unimodal. In addition, this distribution can also model heavy-tailed data. The Maximum Likelihood Estimation method will be used to estimate the parameters of the Beta Pareto distribution and the final result will be obtained by a numerical method. As an illustration, the severity of motor vehicle insurance claims data will be used and will be modeled by the Beta Pareto distribution. It will be shown by a comparison of AIC and BIC values that the Beta Pareto distribution is able to model the the severity of motor vehicle insurance claims data better than the Pareto distribution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nathanael Desephviasco Tanlie
"Pada penelitian ini, diperkenalkan sebuah distribusi yang disebut distribusi Pareto Positive Stable. Distribusi tersebut merupakan distribusi yang dibangun dengan menggunakan transformasi Laplace dari shape parameter pada distribusi Pareto. Selain itu, distribusi Pareto Positive Stable juga didapat dari tranformasi terhadap distrbusi Weibull. Transformasi yang digunakan adalah transformasi exponentiation serta transformasi multiplication by constant. Distribusi Pareto Positve Stable memiliki kelebihan yaitu bentuk fungsi kepadatan peluang berbentuk monoton turun maupun berbentuk unimodal. Selain itu, distribusi Pareto Positive Stable dapat memodelkan data severitas klaim dengan karakteristik data heavy tailed. Berdasarkan penaksiran paramater dengan menggunakan penaksiran maximum likelihood pada data klaim asuransi kendaraan bermotor, kemudian dilakukan perbandingan menggunakan distribusi Lognormal dengan menggunakan AIC dan BIC, didapat bahwa distribusi Pareto Positive Stable lebih baik dalam memodelkan severitas klaim asuransi kendaraan bermotor.

In this study, it introduced a distribution called the Pareto Positive Stable distribution. The distribution is a distribution that is built using the Laplace transform of the shape parameter in the Pareto distribution. In addition, the Pareto Positive Stable distribution is also obtained from the transformation of the Weibull distribution. The transformations used are exponential transformation and multiplication by constant transformation. The Pareto Positive Stable distribution has the advantage of having the form of a probability density function in the form of a decreasing monotone or a unimodal form. In addition, the Pareto Positive Stable distribution can model claim severity data with heavy tail data characteristics. Based on the parameter estimation using maximum likelihood estimation for motor vehicle insurance claims data, then doing comparison using the distribution with the Lognormal distribution using AIC and BIC, it is found that the Pareto Positive Stable distribution is better in modeling the severity of motor vehicle insurance claims."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library