Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Gultom, Yohan Binsar Hasoloan
"Skripsi ini membahas tentang UnderVoltage Load shedding pada subsistem Balaraja jaringan PT. PLN APB Jakarta & Banten. Pelepasan beban dilakukan dengan 3 metode dengan mempertimbangkan daya reaktif terbesar dan mempertimbangkan fluktuasi beban terkecil dan fluktuasi beban terbesar. Pelepasan beban dilakukan dengan tujuan menaikkan tegangan sistem sampai batas toleransi nilai yang diizinkan yaitu +5 % dan -10 % (Aturan Jaringan, 2007) dari nilai tegangan nominalnya yaitu 150 kV. Simulasi dilakukan dengan menggunakan perangkat lunak DIgsilent 14.1.3. Dengan mempertimbangkan daya reaktif beban yang dilepaskan 23.56%. Dengan mempertimbangkan fluktuasi beban terkeciil beban yang dilepaskan 26.81%. Dengan mempertimbangkan fluktuasi beban terbesar beban yang dilepaskan 30.68%. Dengan ini dapat dilhat bahwa Pelepasan beban dengan mempertimbangkan daya reaktif paling optimal.

This thesis examine about Under Voltage Load Shedding in Balaraja Sub-system on PT. PLN APB Jakarta & Banten grid. Load shedding is done by 3 methods by considering the greatest reactive power , greatest load fluctuations and consider the smallest load fluctuations. Load shedding is done with the aim of raising the voltage of the system to the extent the value of the permitted tolerance +5% and -10% (Network Rules, 2007) of the value of its nominal voltage of 150 kV. Simulations done using software DIgsilent 14.1.3. In considering the reactive power load is released 23:56% of full load. By considering the load smallest fluctuation, load is released 26.81%of full load. Taking into account By considering biggest fluctuations load, load is released 30.68% of full load. It can be seen that consider reactive power in load shedding is the most optimal method.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64612
UI - Skripsi Membership  Universitas Indonesia Library
cover
Samsudiat
"Operasi sistem tenaga listrik bertegangan tinggi menuntut kestabilan parameter-parameter kelistrikan, seperti parameter tegangan, agar kinerja dari peralatan-peralatan listrik yang digunakan oleh konsumen menjadi optimal. Tetapi, karakteristik beban dan saluran transmisi dapat mengakibatkan penyerapan tambahan daya reaktif pada sistem yang menyebabkan munculnya susut tegangan yang melebihi batas operasi yang diizinkan. Salah satu metode untuk memperbaiki tegangan dengan memanfaatkan peralatan listrik yang tersedia adalah metode perubahan tap transformator tap staggering . Tap staggering adalah mengoperasikan transformator daya secara paralel dengan membedakan posisi tap yang relatif kecil. Perbedaan tap ini akan menimbulkan arus sirkulasi yang bersifat induktif dan digunakan sebagai kompensator daya reaktif untuk sistem. Sebuah jaringan distribusi dengan dua buah transformator yang beroperasi paralel dari Sistem Jawa-Bali dilakukan simulasi tap staggering dengan menggunakan analisis aliran daya pada ETAP 12.6.0. Simulasi tap staggering dilakukan dari subsistem yang memikul beban paling tinggi pada sistem. Dari hasil analisis aliran daya, diketahui bahwa tap staggering pada subsistem IBT 150/70 kV dapat melakukan perbaikan tegangan dari rata-rata tegangan 88,85 diperbaiki menjadi 93,5 . Pada subsistem trafo distribusi 70/20 kV yang memiliki perbaikan tegangan antara 88,12 sampai 92,40 meningkat menjadi 92,75 sampai 97,23 saat subsistem IBT 150/70 kV dilakukan tap staggering. Pada subsistem IBT 500/150 kV yang dilakukan tap staggering dapat meningkatkan perbaikan tegangan pada subsistem-subsistem yang dilayaninya dimana perbaikan tegangan terbaik diperoleh saat posisi tap IBT1 -8,75 , IBT3 -10 , IBT5 -10 , T1 -10 dan T3 -10 dengan rentang nilai tegangan masing-masing busnya adalah antara 97 sampai 102.

Operating high voltage power systems requires stability of electrical parameters, such as voltage parameters, so the performance of electrical utilities used by consumers can be optimal. However, the characteristics of load and transmission line can absorb additional reactive power in the system that causes drop voltage that exceeds the limit of permitted operations. One method to improve the voltage by utilizing the existing electrical equipment is tap staggering method. Tap staggering is operating power transformer in parallel with small different tap positions. Differences tap positions can provide inductive currents circulation and it rsquo s used as reactive power compensator for the system. A distribution network with two power transformer in parallel of Jawa Bali system is simulated tap staggering by using the power flow analysis on ETAP 12.6.0. Tap staggering is simulated from subsystem that connects a highest load in the system. From power flow analysis, tap staggering at 150 70 kV IBT subsystem can improve voltage from an average of 88.85 to 93.5 . In the 70 20 kV distribution transformer subsystems that have improvements voltage between 88.12 to 92.40 can increase improvements voltage becomes between 92.75 to 97.23 when subsystem IBT 150 70 kV is taken by tap staggering. At subsystem IBT 500 150 kV, tap staggering can increase the voltage on the improvement subsystems where the best voltage improvement is obtained when the tap positions IBT1 8.75 , IBT3 10 , IBT5 10 , T1 10 and T3 10 with a range of values of each bus voltage is between 97 to 102."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S66898
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widy Gunawan
"ABSTRAK
Sistem yang sangat kompleks dan nonlinier atau dengan sistem yang tidak dapat diketahui fungsi alihnya memiliki unsur ketidakpastian dengan daerah kerja yang berubah-ubah. Melode pengendalian konvensional (seperti PID, PI) memiliki keterbatasan dalam merepresentasikan unsur ketidakpastian pada data yang dihasilkan dari sislem yang kompleks untuk diterapkan dalam sistem kendali yang menggunakan kompuler dengan logika Boolean. Logika Fuzzy menggunakan variabel linguistik dan bekerja pada variabel-variabel yang memiliki derajat ketidakpastian yang berbeda-heda. Dengan menggunakan pengendali logika fuzzy, tidak memerlukan perumusan matematis yang akurat, dan metodenya merupakan pendekatan cara berpikir manusia .
Salah satu aplikasi pengendali eksitasi berbasiskan logika fuzzy adalah untuk mengatur nilai daya reaktif yang dihasilkan generator sinkron berotor silinder dalam kondisi terhubung dengan jala-jala. Dengan kondisi bahwa nilai daya aktif yang dihasilkan generator mengikuti nilai beban yang ada, perubahan Jaya aktif generator menyebabkan perubahan pada nilai daya reaktif sebelum adanya pengaluran eksitasi. Nilai arus eksitasi diatur untuk mengatur suplai daya reaktif pads nilai yang diinginkan dengan cara mengatasi perubahan daya reaktif yang disuplai oleh generator akibat perubahan suplai daya aktif tersebut.
Perancangan Pengendali Eksitasi Fuzzy (Fuzzy Excitation Controller/FEC) didasarkan pengetahuan mengenai teknik-teknik kendali, dan pengetahuan serta pengalaman yang dimiliki oleh penulis berdasarkan konsep dan data sislem yang didapatkan dari studi kasus pada perangkat Power System Simulator NE9070. Keberhasilan perancangan Pengendali Eksitasi Fuzzy dilihat berdasarkan, kesamaan keluaran perubahan nilai anus penguat medan yang dihasilkan pengendali, dengan data percobaan yang didapatkan dari perangkat Power System Simulator NE9070, yang diperlukan untuk mengatur suplai daya reaktif pada nilai yang diinginkan dalam kondisi terjadi perubahan suplai daya aktif generator sinkron.

"
2000
S39700
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bagus Chandra Wibawa
"Daya reaktif yang berlebihan dalam sistem listrik menjadi salah satu penyebab penurunan kualitas daya. Permasalahan ini dapat diatasi dengan penggunaan Static Synchronous Compensator (STATCOM) sebagai bagian dari kompensator daya reaktif. Skripsi ini menjelaskan mengenai STATCOM dengan pembahasan lebih khusus pada konfigurasi STATCOM serta metode pengendalian dan perancangannya. Metode pengendalian secara keseluruhan terdiri dari pengendalain daya reaktif dan tegangan kapasitor yang didukung pengendalian penyeimbangan tegangan. Pada penelitian dibahas mengenai perbaikan profil tegangan pada GITET 500 kV Paiton, Grati dan Kediri akibat putusnya dua saluran Paiton-Grati, dengan menentukan peletakan STATCOM yang paling optimal agar sesuai dengan ketentuan aturan jaringan (Grid Code) yaitu +5% dan -10% dari tegangan nominal. Pada saat terjadi gangguan didapatkan nilai tegangan pada masing-masing Gitet 500 kV Paiton, Grati dan Kediri berturut-turut adalah +11,4%, -22% dan +6,9%, setelah itu didapatkan pemasangan STATCOM yang paling optimal adalah pada Gitet 500 kV Paiton dengan menginjeksikan nilai daya reaktif sebesar 458,546 MVAr dengan perubahan nilai tegangan pada bus Paiton, Grati dan Kediri berturut-turut adalah menjadi 2,34%, -3,6%, -6,73%.

Excessive reactive power in electrical sistem has becomes one faktor that contribute to the power quality problems. As a reactive power compensator, Static Synchronous Compensator (STATCOM) has ability to control excessive reactive power. This book describes STATCOM especially for STATCOM configuration with focussed on dicussion of the control method and design. The whole control are consist of reactive power and capacitor voltage control combining with the voltage balancing control for capacitor voltage implemented. In this study discussed the improvement of the stress profile of the 500 kV Paiton, Grati and Kediri GITET due to the breakdown of two Paiton-Grati channels, by determining the optimal placement of STATCOM to comply with the provisions of the network code (Grid Code) which is +5% and -10% form nominal voltage When a disturbance occurs, the voltage values for each 500 kV Gitet Paiton, Grati and Kediri are + 11.4%, -22% and + 6.9% respectively, after that the most optimal installation of STATCOM is obtained at Gitet Paiton 500 kV by injecting a reactive power value of 458,546 MVAr with changes in the value of stress on the Paiton, Grati and Kediri buses respectively is 2.34%, -3.6%,-6.73%."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ivan Surya Fadhilah
"Energi listrik telah menjadi suatu kebutuhan esensial untuk menunjang kehidupan manusia. Rencana Usaha Penyediaan Tenaga Listrik Tahun 2021-2030 menyebutkan bahwa akan terjadi peningkatan jumlah pelanggan mencapai 24.4 juta dengan persentase pertumbuhan listrik sebesar 4.9% di Indonesia, sehingga penyedia tenaga listrik harus mampu memenuhinya secara efisien. Salah satu faktor yang memengaruhi efisiensi suatu sistem tenaga listrik adalah terjadinya rugi-rugi daya aktif pada saat penyaluran listrik dari pembangkit menuju pelanggan. Hal ini tidak dapat dihindari, namun dapat diminimalisasi dengan melakukan optimisasi aliran daya reaktif pada sistem berupa pengaturan magnitude tegangan terminal generator, posisi tap transformator, dan keluaran dari sumber daya reaktif. Optimisasi aliran daya reaktif merupakan permasalahan yang kompleks karena tidak konveks, memiliki variabel kontinyu dan diskrit, serta memiliki banyak nilai optimum lokal maupun global sehingga dibutuhkan algoritma perhitungan cerdas yang mampu menemukan solusi nilai optimum global dari fungsi tujuan, meskipun terdapat variabel diskrit didalamnya. Penelitian ini memanfaatkan algoritma particle swarm optimization (PSO) dalam menyelesaikan permasalahan optimisasi aliran daya reaktif yang diuji di Sistem RIS dengan mengatur magnitude tegangan terminal generator bermode kontrol tegangan dan/atau posisi tap transformator yang dilengkapi On Load Tap Changer. Hasil dari penilitian ini berupa penurunan total rugi-rugi daya aktif saluran transmisi dari kondisi awal pada Sistem RIS sebesar 20.13% saat mengatur tegangan terminal generator, 8.62% saat mengatur posisi tap transformator yang dilengkapi On Load Tap Changer, dan 13.18% saat mengatur keduanya.

Electricity has become an essential need to support human life. The Electricity Supply Business Plan for 2021-2030 states that there will be an increase in the number of customers up to 24.4 million with a percentage growth of 4.9% in Indonesia, so electricity providers must be able to meet it efficiently. One of the factors affecting the efficiency of a power system is the occurrence of active power losses during the transmission of electricity from the generator to the customers. This cannot be avoided but can be minimized by optimizing reactive power flow in the system, such as setting the terminal voltage magnitude of the generator, the tap position of the transformer, and the output of reactive power sources. Reactive power flow optimization is a complex problem because it is non-convex, has continuous and discrete variables, and has many local and global optimum values, requiring intelligent calculation algorithms that can find the global optimum value solution of the objective function, even though there are discrete variables in it. This research utilizes the particle swarm optimization (PSO) algorithm to solve the optimization of reactive power flow problem tested in the RIS system by controlling the voltage magnitude of the generator terminal and/or the tap position of the transformer equipped with an On-Load Tap Changer. The results of this study are a decrease in the total active power losses on transmission lines of the RIS system by 20.13% when adjusting the generator terminal voltage magnitude, 8.62% when adjusting the tap position of the transformer equipped with an On-Load Tap Changer, and 13.18% when adjusting both."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elian Richard
"Perkembangan industri di Indonesia yang pesat mendorong peningkatan permintaan pasokan listrik di berbagai sektor demi tercapainya implementasi teknologi industri 4.0 dan terwujudnya inisiatif Making Indonesia 4.0 oleh Kementrian Perindustrian Republik Indonesia. Maka dari itu, sangat penting bagi sebuah industri untuk memiliki sistem tenaga listrik yang baik untuk bisa mendapatkan harga yang terjangkau dengan melakukan penghematan pemakaian daya. Salah satu cara yang dapat dilakukan pada sistem tenaga listrik yang beroperasi dengan baik adalah dengan meningkatkan faktor daya operasionalnya. Agar tercapainya peningkatan faktor daya, perlu ditentukan jenis kompensator faktor daya untuk menentukan besaran daya reaktif kompensasi yang sesuai. Besaran daya reaktif kompensasi yang dibutuhkan perlu dilakukannya optimasi, dapat digunakan algoritma pembobotan normalisasi minimax agar komputasi dapat relatif lebih mudah dan lebih cepat. Pada studi kasus di PT. ON, algoritma pembobotan normalisasi minimax dapat menentukan besaran kapasitor optimum (21 kVAR dengan 7 step) sehingga dapat dihasilkannya penghematan daya reaktif sebesar 1.083,73 kVAR dengan rata-rata sebesar 11.29 kVAR (62.30%), menaikkan rata-rata faktor daya dari 0.8 menjadi 0.96 (20%), menurunkan rata rata penggunaan arus menjadi 20.67 Ampere (78.34%), menurunkan rata-rata daya semu menjadi 13.00 VA (74.09%), dan menurunkan rata-rata rugi-rugi daya yang dihasilkan sebesar 31.48%.

The fast improvement of the industrial sector in Indonesia has pushed the escalation of electrical supply demand in every sector to achieve the implementation of industrial technology 4.0 and the realization of Making Indonesia 4.0 by the Ministry of Industry Republic of Indonesia. Therefore, the industry needs to have a good power electrical system to decrease electrical expenses, and one of the ways is to limit the use of power electricity. One of the things that can be done to have a good operation of the power electrical system is to achieve the enhancement of the power factor. To achieve it, the type of power factor compensator has to be determined, then the suitable value of compensation reactive power can be determined. The amount of reactive power compensation needed needs to be optimized, in which the minimax normalization weighting algorithm can be used so that computation can be relatively easier and faster. In the case study of PT. ON building, the minimax normalization weighting algorithm can determine the optimum capacitor size (21 kVAR with 7 steps) so that a reactive power saving of 1,607.45 kVAR and average of 11.29 kVAR (62.30%) can be generated, increasing the average power factor from 0.8 to 0.96 (20%), reducing the average current usage to 20.67 Amperes (78.34%), lowering the average apparent power to 13.00 VA (74.09%), reducing the resulting average power losses by 31.48%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kurniadi Ramadhan
"Gangguan dalam menghasilkan sistem tenaga listrik dapat menyebabkan ketidakstabilan tegangan pada sistem beban. Ketidakstabilan tegangan dalam sistem menyebabkan sistem beroperasi secara tidak normal yang menyebabkan keruntuhan tegangan atau pemadaman total di seluruh sistem. Makalah ini membahas analisis stabilitas tegangan statis dan dinamis dari Sistem Tenaga Senayan-Sambas dengan menggunakan perangkat lunak ETAP12.6.0 untuk simulasi aliran beban dan simulasi analisis sementara. Perubahan pengaruh persentase beban dan catu daya reaktif dari tegangan sistem akan diamati menggunakan analisis statis. Skema pelepasan beban dengan relai di bawah tegangan dan kompensator daya reaktif dalam beban, yang akan dilindungi ketika terjadi gangguan masif pada generator, akan digunakan sebagai sistem. Skema pelepasan beban disampaikan untuk mengembalikan dan menstabilkan tegangan sistem. Skema tersebut kemudian akan menjatuhkan beberapa beban prioritas tinggi dari sistem. 15 MVA atau 12,32% dari seluruh beban akan dihemat untuk mencegah beban dari tersandung kompensator daya reaktif yang digunakan dengan 30 capasitive rating MVAR.

Interference in generating electric power systems can cause voltage instability in the load system. Voltage instability in the system causes the system to operate abnormally which causes a voltage collapse or a total blackout throughout the system. This paper discusses the static and dynamic stress stability analysis of the Senayan-Sambas Power System using ETAP12.6.0 software for load flow simulations and transient analysis simulations. Changes in the effect of the percentage load and reactive power supply of the system voltage will be observed using static analysis. A load release scheme with a relay under voltage and a reactive power compensator in the load, which will be protected when there is massive interference with the generator, will be used as a system. The load release scheme is delivered to restore and stabilize the system voltage. The scheme will then drop some high priority loads from the system. 15 MVA or 12.32% of the total load will be saved to prevent the load from tripping over the reactive power compensator used with 30 MVAR rating capacities."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Bambang Sumadiyana
"Salah satu faktor yang menentukan kualitas dan keandalan sistem tenaga listrik adalah pengoperasian sistem pada tegangan dan frekuensi konstan dengan rugirugi daya seminimal mungkin. Hal ini dapat diketahui dengan analisis aliran daya pada kondisi normal. Simulasi yang menggunakan ETAP dilakukan terhadap sistem 150 kV Region Jakarta-Banten dengan dua situasi yaitu penggunaan grid dan atau IBT.
Simulasi dengan menggunakan IBT menghasilkan data perhitungan yang lebih baik dibandingkan simulasi dengan menggunakan grid. Kompensasi pada suatu rel akan menyebabkan berkurangnya aliran daya reaktif menuju rel tersebut sehingga dapat mengurangi arus, rugi-rugi daya dan jatuh tegangan pada saluran serta menambah faktor daya.
One of the factors which determines quality and reliability of power system is system operation with constant voltage and frequency with minimal losses. Those can be seen using load flow analysis in normal condition. ETAP can be applied on 150 kV Region Jakarta-Banten System with two situations that are using grid or IBT.
The result of simulation using IBT is better than the simulation using Grid. The compensation at one bus will cause decreasing of reactive power to the bus, and lead to decreasing of current, power losses and voltage drop at line transmission, and increasing power factor.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
R.03.09.06 Sum s
UI - Skripsi Open  Universitas Indonesia Library
cover
Boromeus Sakti Wibisana
"KWH meter merupakan instrumen yang memiliki fungsi utama melakukan pengukuran energi listrik. KWh-meter digunakan oleh PLN untuk mendata dan menganalisa penggunaan energi oleh konsumen. KWH meter yang dikenal luas oleh masyarakat umum adalah KWH meter konvensional yang memiliki fitur terbatas. KWh-meter konvensional ini kita kenal dengan KWh-meter analog. KWh-meter analog mampu membaca jumlah pemakaian daya aktif dengan cukup baik. Namun daya reaktif yang terbaca tidak cukup baik, oleh karena itu digunakan KWh-meter digital, yang dapat membaca daya aktif dengan baik begitu juga dengan daya reaktifnya. KWh-meter digital memiliki ketelitian yang lebih baik dari pada KWh-meter analog. Ketelitian dari KWh-meter digital ini membuat PLN akan melakukan penggantian pemasangan KWh-meter analog dengan KWhmeter digital.

KWH meter is the instrument that have a main function to measure the electricity energy. KWh-meter is used by PLN to record and analyze the energy that used by consumen. KWH meter that we already know is conventional KWH meter that have limited function. The conventional KWh-meter we know as analogue KWhmeter. The analogue KWh-meter can read total amount of active power used well enough. But the reactive power can't be read as well as the active power.therefore we use the digital KWh-meter,that can read the reactive power as well as the active power. Digital KWh-meter is also more accurate than the analogue. The accuracy of the Digital KWh-meter make PLN will change the installation of the analogue KWh-meter to Digital KWh-meter."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S51035
UI - Skripsi Open  Universitas Indonesia Library
cover
Abyan Habib Yuntoharjo
"Saat ini energi baru dan terbarukan sedang dalam masa pengkajuan dalam pengimplementasiannya agar dapat berkembang di waktu yang akan dating. Salah satu sumber energi baru dan terbarukan yang digunakan di Indonesia merupakan Pembangkit Listrik Tenaga Bayu (PLTB), yang mengkonversikan tenaga angin untuk memutar rotor yang kemudian diubah menjadi tenaga listrik. Penggunaan PLTB yang sudah diinterkoneksikan pada salah satu daerah di Sulawesi bagian Selatan (SulbagSel), akan dijadikan penelitian guna melihat daya keluaran dan tegangan yang dihasilkan oleh masing-masing PLTB. Dengan merubah kecepatan angin pada PLTB dapat dilihat keluaran maksimal dan minimal yang terjadi. Studi ini dilakukan terdiri dari studi stabilitas yang menggunakan perangkat lunak DIgSILENT PowerFactory. Hasil dari studi stabilitas yaitu tegangan pada tiap sistem tetap tidak menyalahi aturan dari IEC yang berlaku. Pada tiap level tegangan terjadinya pergeseran tidak lebih dari 1,23%, namun telah adanya ketidakstabilan saat PLTA Poso lepas dari sistem, yang menyebabkan ketidakstabilan tegangan pada PAMONA karena berada dibawah batas yang ditentukan oleh gridcode. Kinerja dari masing-masing PLTB menghasilkan daya aktif dan reaktif yang cukup, dimana dibutuhkan kecepatan angin yang bervariasi untuk menentukan besar daya yang diberikan, dengan daya terbesar PLTB Sidrap 17.557 MW dengan daya reaktif -0.021 MVAr pada tegangan 1.001 p.u. dan PLTB Tolo menghasilkan daya 35.229 MW dengan daya reaktif sebesar 1.086 MVAr pada tegangan 1 p.u.

Currently new and renewable energy is in a period of progress in its implementation in order to develop in the future. One of the new and renewable energy sources used in Indonesia is the Bayu Power Plant (PLTB), which converts wind power to rotate the rotor which is then converted into electric power. The use of pltb that has been interconnected in one of the regions in South Sulawesi (South Sulawesi), will be used as research to see the output power and voltage produced by each PLTB. By changing the wind speed on the PLTB can be seen maximum and minimal output that occurs. This study consisted of a stability study using DIgSILENT PowerFactory software. The result of the stability study is that the voltage in each system remains not in violation of the rules of the applicable IEC. At each voltage level the occurrence of a shift of no more than 1.23%, but there has been instability when the Poso hydropower plant is detached from the system, which causes voltage instability in PAMONA because it is below the limit specified by the grid code. The performance of each PLTB produces sufficient active and reactive power, where it takes a varied wind speed to determine the amount of power provided, with the largest power Sidrap PLTB 17,557 MW with reactive power -0.021 MVAr at a voltage of 1,001 p.u. and PLTB Tolo producing 35,229 MW of power with reactive power of 1,086 MVAr at 1 p.u."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>