Ditemukan 4 dokumen yang sesuai dengan query
Alexander
"Penggunaan energi secara efisien merupakan hal yang penting untuk mengatasi peningkatan permintaan terhadap energi pada masa kini. Penelitian ini bertujuan untuk mengoptimasi penggunaan energi terutama pada kereta dengan menerapkan algoritma Deep Deterministic Policy Gradient secara Multi Agent. Algoritma ini telah terbukti pada literatur akan kemampuannya dalam menangani permasalahan dengan aksi yang besifat kontinuu. Akan tetapi DDPG terkenal sensitif terhadap variasi \textit{hyperparameter} dan sumber daya komputasi yang besar untuk menemukan strategi optimal. Penelitian ini bertujuan untuk mempelajari dampak dari variasi \textit{hyperparameter} dan memilih nilai yang tepat pada penerapan Multi-Agent DDPG untuk mengoptimasi sistem penggerak kereta.
Efficient usage of energy is necessary to cope with the increasing demand of modern society. This research aims to fulfill this goal by implements Deep Deterministic Policy Gradient (DDPG) as its DRL algorithm. DDPG has been proven in literature for its ability in controlling continuous action space. But DDPG is known to be brittle to hyperparameter and need a lot of time and computational resource to find optimal policy. This research aims to learn the effect of different value of hyperparameter in the implementation of Multi Agent DDPG to optimize the energy usage of train driving system."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Muhammad Taufiqul Mawarid Nazaruddin Lopa
"Congestion control merupakan salah-satu mekanisme yang penting dalam jaringan komputer, termasuk Internet. Banyak penelitian yang telah mencoba menghasilkan congestion control yang efektif mengatur jaringan sehingga tidak terjadi congestion selagi memastikan Quality of Service (QoS) yang baik. Sejak tahun 1988, telah banyak algoritma congestion control yang dibuat untuk mengatasi hal tersebut. Selama ini, pada umumnya algoritma congestion control menggunakan konsep rule-based yang mana algoritma tersebut mengatur jaringan berdasarkan aturan-aturan yang sudah ditentukan oleh manusia. Seiring berkembangnya teknologi kecerdasan buatan dan pembelajaran mesin, semakin banyak congestion control yang mulai dikembangkan menggunakan teknologi tersebut. Salah satu teknologi pembelajaran mesin yang cocok digunakan untuk congestion control adalah deep reinforcement learning. Pembelajaran mesin dimanfaatkan untuk mengganti manusia dalam menciptakan aturan yang digunakan congestion control untuk menghasilkan congestion control berbasis deep reinfocement learning (DRL-CC). Penggunaan pembelajaran mesin dipercaya memiliki kemampuan untuk mengatasi kondisi jaringan yang semakin dinamis dibandingkan pada abad ke-20. Penelitian ini merupakan lanjutan dari penelitian sebelumnya yang bertujuan untuk memperbaiki algoritma DRL-CC yang sudah diciptakan yaitu Aurora dengan memodifikasi algoritma tersebut. Penelitian ini membandingkan Aurora dengan modifikasi DRL-CC tersebut pada kasus pemakaian yang semakin relevan pada masa ini yaitu streaming video untuk mencari tahu apakah modifikasi tersebut bersifat robust. Dilakukan eksperimentasi pada DRL-CC tersebut menggunakan Pantheon pada bermacam skenario jaringan termasuk skenario streaming video. Ditemukan bahwa pada skenario streaming video, modifikasi Aurora memiliki performa yang lebih baik dari Aurora asli. Terdapat penurunan sebesar 1.87 kali lebih rendah pada kategori delay yang dihasilkan oleh modifikasi Aurora. Selain itu, modifikasi Aurora mampu menekan loss rate yang dialami sebesar 2.36 kali lebih rendah.
Congestion control is an essential mechanism in computer networks, including the Internet. Many studies have tried to produce congestion control that effectively regulates the network so that congestion does not occur while ensuring good Quality of Service (QoS). Since 1988, many congestion control algorithms have been created to overcome this. So far, congestion control algorithms generally use a rule-based concept where the algorithm manages the network based on rules that have been determined by humans. As artificial intelligence and machine learning technology develop, more and more congestion controls are starting to be developed using this technology. One machine learning technology that is suitable for congestion control is deep reinforcement learning. Machine learning is used to replace humans in creating the rules used by congestion control to produce deep reinforcement learning based congestion control (DRL-CC). The use of machine learning is believed to have the ability to overcome network conditions that are increasingly dynamic compared to those of the 20th century. This research is a continuation of previous research which aims to improve the DRL-CC algorithm that has been created, namely Aurora, by modifying the algorithm. This research compares Aurora with the modified DRL-CC algorithm in a use case that is increasingly relevant today, namely video streaming, to find out whether the modification is robust. Experiments were carried out on DRL-CC using Pantheon in various network scenarios, including video streaming. It was found that in the video streaming scenario, the modified Aurora performed better than the original Aurora. There was a decrease of 1.87 times in the delay category produced by the Aurora modification. Apart from that, the Aurora modification was able to reduce the loss rate experienced by 2.36 times lower."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Raihan Fakhar Arifin
"Kendaraan listrik (EV) telah menjadi solusi yang semakin populer untuk mengurangi emisi gas kendaraan bermotor dan mengatasi masalah lingkungan. Meningkatnya penggunaan EV menimbulkan tantangan baru terkait manajemen daya di stasiun pengisian daya. Masalahnya adalah kurangnya efisiensi dalam mengalokasikan daya saat kendaraan sedang mengisi daya di stasiun pengisian daya, yang dapat menyebabkan permintaan daya yang melebihi beban maksimum stasiun dan mengakibatkan lonjakan harga yang harus dibayar. Tujuan utama dari penelitian ini adalah untuk mengembangkan pengontrol manajemen daya yang efisien untuk stasiun pengisian daya kendaraan listrik berbasis deep reinforcement learning (DRL). DRL diterapkan karena kemampuannya untuk menyelesaikan sistem kontrol tanpa model yang akurat (free-based-model), terutama untuk stasiun pengisian daya EV yang memiliki faktor stokastik. Sistem akan secara otomatis mengontrol alokasi daya untuk pengisian daya kendaraan berdasarkan informasi dari setiap kendaraan yang terhubung ke stasiun pengisian daya dan variabel lainnya agar tidak melebihi batas daya maksimum stasiun pengisian daya. Hasil penelitian ini menunjukkan bahwa penggunaan algoritma DRL, terutama DDPG dengan pendekatan actor-critic, dapat mengalokasikan daya pengisian daya secara optimal untuk setiap EV dan secara signifikan memaksimalkan keuntungan stasiun dibandingkan dengan algoritma lainnya.
Electric vehicles (EVs) have become an increasingly popular solution to reduce motor vehicle gas emissions and address environmental concerns. The increasing use of EVs poses new challenges regarding power management at charging stations. The problem is the lack of efficiency in allocating power while vehicles are charging at charging stations, which can lead to power demand that exceeds the maximum load of the station and results in a spike in the price to be paid. The main objective of this research is to develop an efficient power management controller for electric vehicle charging stations based on deep reinforcement learning (DRL). DRL is applied because of its ability to solve the control system without an accurate model (free-based-model), especially for EV charging stations that have stochastic factors. The system will automatically control the power allocation for vehicle charging based on information from each vehicle connected to the charging station and other variables so as not to exceed the charging station's maximum power limit. The results of this study show that the use of DRL algorithms, especially DDPG using actor-critic approach, can optimally allocate charging power for each EV and significantly maximize the station's profit compared to the other algorithms. "
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Sanditya Larope Sutanto
"Skripsi ini mengatasi tantangan pelatihan agen Deep Reinforcement Learning (DRL) untuk mengemudi otonom dengan mengembangkan filter keselamatan prediktif berbasis model untuk mencapai pelatihan yang aman. Efektivitas pendekatan ini dievaluasi melalui analisis komparatif dari masalah mengemudi otonom yang diselesaikan menggunakan tiga skenario implementasi yang berbeda: pengendali berbasis pembelajaran konvensional, pengendali berbasis pembelajaran dengan filter keselamatan prediktif, dan pengendali prediktif berbasis model. Tujuan utama dari masalah mengemudi optimal dalam penelitian ini adalah meminimalkan waktu putaran pada lintasan tertutup, di mana agen tidak dibatasi oleh lintasan yang telah ditentukan tetapi dibatasi oleh batas lintasan. Oleh karena itu, filter keselamatan prediktif bertujuan untuk mempertahankan posisi agen dalam batas lintasan selama pelatihan, dengan intervensi minimal. Penelitian ini menyediakan desain dan implementasi dari pengendali prediktif berbasis model, pengendali berbasis pembelajaran konvensional, dan pengendali berbasis pembelajaran dengan filter keselamatan prediktif untuk masalah mengemudi optimal. Ditemukan bahwa filter keselamatan secara efektif mengurangi potensi kerusakan perangkat keras akibat tabrakan selama pelatihan dan meningkatkan efisiensi sampel. Dari segi kinerja, pengendali dengan filter keselamatan mencapai waktu putaran yang lebih cepat dibandingkan pengendali prediktif berbasis model, tetapi sedikit lebih lambat dibandingkan pengendali berbasis pembelajaran konvensional, terutama karena pendekatannya yang konservatif terhadap tikungan akibat penggunaan filter keselamatan prediktif berbasis model.
This thesis addresses the challenge of training Deep Reinforcement Learning (DRL) agents for autonomous driving with an emphasis on optimal performance and safety. The primary objective is to develop a model-based predictive safety filter to achieve safe training. The effectiveness of this approach is evaluated through a comparative analysis of an autonomous driving problem solved using three distinct implementation scenarios: a conventional learning-based controller, a learning-based controller with a predictive safety filter, and a model predictive controller. The core goal of the optimal driving problem in this research is to minimize lap times on a closed-loop track, where the agent is not restricted to predefined trajectories but is constrained by track boundaries. Consequently, the predictive safety filter aims to maintain the agent’s position within track boundaries throughout training, with minimal intervention This research provides implementation of a model predictive controller, a conventional learning-based controller, and a learning-based controller with a predictive safety filter for optimal driving problems. The findings reveal that the safety filter effectively reduces potential hardware damage from crashes during training and increases sample efficiency. Performance-wise, the safety filter-equipped controller achieves faster lap times than the traditional model predictive controller but is marginally slower than the conventional learning-based controller, primarily due to its conservative approach to turns because of using the model-based predictive safety filter."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library