Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Kresna Septian
Abstrak :
Indonesia merupakan negara yang memiliki kelembaban yang cukup tinggi dan cuaca yang cukup panas, oleh karena itu negara Indonesia membutuhkan alat pengering udara agar kelembaban dapat turun sampai titik nyaman untuk manusia. Sistem pengering udara lebih ramah lingkungan sebagai teknologi alternatif untuk proses penurunan kelembaban, terutama dalam kasus dengan muatan laten yang tinggi untuk menjaga kualitas udara. Teknologi ini lebih efisien di iklim panas dan lembab seperti Indonesia. Penelitian ini melakukan penyelidikan eksperimental untuk mengetahui rasio kelembapan terhadap udara untuk mengetahui karakteristik cairan ionik menggunakan alat pengering udara. Cairan ionik dalam percobaan ini akan melewati bilah kayu yang berfungsi sebagai alat penukar kalor, cairan ionik akan bersirkulasi selama kurang lebih dua jam. Eksperimen ini memvariasikan laju aliran cairan ionic dari 200 sampai 600 L/h dan didapatkan juga hasil rasio kelembaban yaitu -0.10 sampai -0.56 g/kg. Setiap kenaikan laju aliran besarannya juga akan semakin meningkat.
Indonesia is a country that has quite high humidity and fairly hot weather, therefore the country of Indonesia needs a dehumidifier so that humidity can drop to a comfortable point for humans. The dehumidifier system is more environmentally friendly as an alternative technology for the process of reducing humidity, especially in cases with high latent loads to maintain air quality. This technology is more efficient in hot and humid climates such as Indonesia. This study conducted an experimental investigation to determine the humidity ratio of air to determine the characteristics of ionic liquids using dehumidifier. The ionic liquid in this experiment will pass through a conventional wooden slats that functions as a heat exchanger, the ionic liquid will circulate for about two hours. This experiment varied the flow rate of ionic liquids at 200 to 600 L / h and the results of the humidity ratio were -0.10 to -0.56 g / kg. Every increase in the rate of flow will also increase the humidity ratio.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sigit Julius Setyawan
Abstrak :
ABSTRAK
Relative Humidity adalah salah satu aspek penting yang harus dikontrol pada system pengkondisian udara.Namun, Penggunaan energy reheat untuk mengontrol Humidity pada system pengkondisian udara secara konvensional memerlukan energy tambahan yang tidak sedikit . Untuk meningkatkan efisiensi, dilakukan penelitian heat pipe pada aplikasi pengkondisian udara yang dilakukan di Laboratorium Pendingin, Departmen Teknik Mesin FTUI. Pada studi ini beberapa aspek yang dikaji adalah besar performance heat pipe dalam meningkatkan Penurunan Humidity, Besar energy untuk Reheat dari Heat pipe, Penurunan Humidity ratio, dan total penghematan energy pengkondisian udara dengan memvariasikan mass flow rate udara dan orientasi heat pipe. Dari studi yang telah dilakukan, Heat pipe dapat berperan meningkatkan pernurunan kelembaban system pengkondisian udara secara konvensional dan Mengurangi energy untuk reheating. Penggunaan Heat pipe dapat meningkatkan penurunan humidity hingga maksimal 6.405% dan minimal 3.12% pada keseluruhan variable pengujian. Penggunaan Heat pipe dapat menghemat energy untuk reheating hingga maksimum 18.2% dan minimum 8.77% pada keseluruhan variable uji. Mass flow rate udara mempengaruhi performance heat pipe dalam precooling dan reheating. Peningkatan mass flow rate meningkatkan preheating dan precooling heat pipe namun disisi lain daya untuk kipas juga meningkat.Performance heat pipe dengan orientasi heat pipe vertical dan evaporator dibawah lebih baik bila dibandingkan dengan orientasi heat pipe horizontal hal ini disebabkan karena laju aliran working fluida dari condenser heat pipe ke evaporator meningkat karena pengaruh gravitasi.
ABSTRACT
Relative Humidity is important aspect that must be controlled in Air Conditioning.however. air conditioning system, must have additional energy reheat to control Humidity in the air conditioning.To improve efficiency, conducted research on the application of heat pipe in air conditioning is performed at the Laboratory, Department of Mechanical Engineering University of Indonesia.In the present study examined several aspect of the performance heat pipe to increasing humidification, energy to reheat form heat pipe and total air conditioning saving energy by varying the air mass flow rate and heat pipe orientations. The studies have been done, heat pipe can be enchanment humdification in convetional air conditioning and reduce energy for reheating.Using heat pipe in conventional air conditioning system can improve humidification minimum at 3.12 % and maximum at 6.405% in the overall test variable. the use of heat pipe can save energy for reheating up to maximum 18.2% and minimum 8.77% on the overall test variable. Air mass flow rate affect the performance of heat pipe in the precooling and reheating. Increase in air mass flow rate increase precooling and reheating heat pipe but on the other hand power of fan also increase. Performance of heat pipe with vertical orientation where evaporator of heat pipe in bottom is more better when compared to the horizontal orientation. this is because the flow rate of working fluid from the condenser of heat pipe to evaporator of heat pipe is increasing by gravity.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43882
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Irfan Dzaky
Abstrak :
Di jaman modern seperti saat ini teknologi membuat banyak perubahan khususnya dalam bidang pengolahan hasil pertanian. Untuk mengawetkan produk pertanian dibutuhkan teknologi pengeringan yang hemat energi. Pada penelitian ini melakuka kombinasi sistem pengeringan jenis bed dryer dengan heat pump (sistem refrigerasi). Pada pengujian yang dilakukan, silica gel yang dibasahi dengan air digunakan untuk mesimulasikan kinerja dari bed dryer. Hasil yang diperoleh dari penelitian ini adalah dengan mengkombinasikan heat pump pada sistem pengering meningktakan laju penguapan dari silica gel. Debit udara pengering dan temperatur heater yang semakin tinggi, serta kelembaban udara yang semakin rendah akan memperbaiki kinerja bed dryer terhadap laju pengapannya. Walaupun dengan penambahan kompresor refrigerasi dan fan kondenser membuat daya total dari bed dryer yang semakin besar, sebenarnya memiliki suatu nilai tambah dengan memanfaatkan sisi evaporator sebagai dehumidifikasi udara lembab serta pemanfaatan kondenser 1 sebagai heat recovery atau pre-heater. hal ini tertutupi dengan adanya pemanfaatan kondenser 1 yang memberikan penghematan daya heater hingga 79.1%. Ketika kelembaban udara diatur semakin rendah, akan berdampak pada terjadinya kenaikan temperatur outlet kondenser 1 pada sisi udara hingga 42.5°C. ......In the modern era, technology has made many changes, especially in agricultural product processing. In the preservation of the agricultural product, energy-efficient drying technology is needed. In this study, a combination of bed dryer and heat pump (refrigeration system) is combined. In the tests carried out, silica gel moistened with water is used to simulate a bed dryer's performance. The results obtained from this study are combining a heat pump in the drying system to increase the evaporation rate of the silica gel. The higher the drying air discharge and heater temperature, and the lower the air humidity will improve the bed dryer's performance on its vapor rate. Although the addition of a refrigeration compressor and condenser fan makes the total power of the bed dryer even greater, it has an added value by utilizing the evaporator side as dehumidification of humid air and utilizing condenser 1 as heat recovery or pre-heater. This is covered by the use of condenser 1, which provides heater power savings of up to 79.1%. When the air humidity is set lower, it will cause an
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Auli Rahman
Abstrak :
Kelembaban merupakan parameter yang menunjukan kandungan air dalam udara. Untuk menurunkan kelembaban, dapat dilakukan dehumidifikasi dengan proses overcooling dan reheating menggunakan cooling coil dan heater. Dengan menggunakan U-bend heat pipe, proses dehumidifikasi dapat dilakukan tanpa menggunakan alat pemanas tambahan. Dengan begitu kita dapat menghemat energi yang dipakai daripada sistem sebelumnya. Salah satu kebutuhan dehumidifikasi adalah untuk memenuhi kebutuhan termal dari ruang bersih. Pada Skripsi ini dilakukan permodelan dan simulasi sistem U-bend Heat Pipe sebagai dehumidifier. Simulasi dilakukan dengan menggunakan software ANSYS FLUENT 2020 R1 Student Version. Kemudian dari hasil simulasi dilakukan analisa apakah dengan model konfigurasi heat pipe yang dibuat apakah memenuhi kebutuhan termal ruang bersih sesuai dengan ASHRAE Standard 22 - 24 °C dan 40 - 60 % RH serta karakteristik efektivitas heat pipe terhadap temperatur dan kecepatan inlet. Hasil simulasi menunjukan heat recovery tertinggi didapatkan dari kondisi kecepatan udara 2.0 m/s dan temperatur inlet 45 °C yaitu sebesar 199.30 W. Efektivitas terbaik berada pada kondisi kecepatan udara 0.5 m/s yaitu sebesar 55.4 %. Dari perolehan data, efektivitas berbanding terbalik dengan kecepatan inlet dan sistem heat pipe dapat memenuhi standar keadaan temperatur dan RH dari ruang bersih. U-Bend Heat Pipe baik diterapkan untuk dehumidifikasi karena dapat menggantikan fungsi heater dan mengurangi beban pendinginan sebesar 55.4 % pada kecepatan inlet 0.5 m/s untuk menurunkan relative humidity sampai dengan 57% RH. ......Humidity is an important parameter to show water vapour contained in air. Overcooling and reheating using cooling coil and heater can be used to lower the humidity. With Ubend heat pipe, dehumidification can be done without additional heater. So the energy used will be lower than previous system. One of the needs of dehumidification is to satisfy thermal needs of a cleanroom. In this final project, U-bend Heat Pipe system is being modelled and simulated for dehumidification. System is simulated with ANSYS FLUENT 2020 R1 Student Version software. The simulation result then be analyzed to see if the said heat pipe system is fulfilling thermal needs of the cleanroom corresponding to ASHRAE Standard 22 - 24 °C and 40 - 60% RH. Also to observe the characteristic of heat pipe effectivity to inlet velocity and inlet temperature. The simulation result shows highest heat recovery 199.30 W is obtained on 2.0 m/s inlet velocity and 45 °C inlet temperature. The best effectivity 55.4 % is obtained on 0.5 m/s. The simulation shows that effectivity is directly proportional to inlet velocity and heat pipe system can fulfill the standard thermal needs of a cleanroom. U-Bend Heat Pipe is recommended to be applied for dehumidification because it can replace heater’s function and lighten the cooling load by 55.4 % at 0.5 m/s inlet velocity to lower the relative humidity up to 57% RH.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Zidny
Abstrak :
In tropical countries like Indonesia, maintaining comfortable and healthy indoor environments is a significant challenge due to high temperatures and humidity levels. This issue is particularly critical for the Fast-Moving Consumer Goods (FMCG) industry, where specific room ambient conditions are necessary to ensure product safety and quality, especially during processes like beverage filling. This research delves into integrating heat pipes into HVAC systems to improve energy efficiency in regards to ensuring clean room conditions during beverage filling processes. With hopes to align with the United Nations Sustainable Development Goals (SDGs). The research employed two-row U-shaped heat pipes with a wick structure made of sintered copper, filled with water at a 50% ratio. The U-shaped HPHE facilitates both precooling and reheating processes. The evaporator section absorbs heat from incoming air, reducing the compressor's workload. After passing through the cooling coil, the air temperature rises again due to heat release at the condenser side of the HPHE, reducing the energy needed for reheating during dehumidification. Initial characterization of the heat pipe was conducted with an inlet air temperature of 45°C and an air velocity of 1.4 m/s. Our experiments revealed a peak temperature increase of 6.4°C on the condenser side, resulting in a 20.7% reduction in relative humidity. The temperature drop on the evaporator side was 0.7°C. Maximum energy savings of 304.44 W were achieved at this inlet temperature with an air velocity of 2.2 m/s. To understand the performance under lower temperature conditions, further tests were conducted at inlet temperatures of 30°C, 35°C, and 40°C. These variations demonstrated the versatility of the U-shaped HPHE in improving dehumidification efficiency across a range of operating conditions. The highest effectiveness observed was 21.04%, showcasing the potential of U-shaped HPHEs in enhancing energy efficiency in HVAC systems. ......Di negara-negara tropis seperti Indonesia, menjaga lingkungan dalam ruangan yang nyaman dan sehat merupakan tantangan besar karena suhu tinggi dan tingkat kelembapan yang tinggi. Masalah ini sangat penting bagi industri barang konsumen cepat saji (Fast-Moving Consumer Goods atau FMCG), di mana kondisi ruangan tertentu diperlukan untuk memastikan keamanan dan kualitas produk, terutama selama proses pengisian minuman. Penelitian ini mendalami integrasi pipa panas ke dalam sistem HVAC untuk meningkatkan efisiensi energi dalam menjaga kondisi ruangan bersih selama proses pengisian minuman. Dengan harapan untuk selaras dengan Tujuan Pembangunan Berkelanjutan Perserikatan Bangsa-Bangsa (SDGs). Studi ini menggunakan pipa panas berbentuk U dengan struktur sumbu yang terbuat dari tembaga sinter, diisi dengan air pada rasio 50%. HPHE berbentuk U ini memfasilitasi proses pendinginan awal dan pemanasan ulang. Bagian evaporator menyerap panas dari udara yang masuk, mengurangi beban kerja kompresor. Setelah melewati koil pendingin, suhu udara naik kembali karena pelepasan panas di sisi kondensor HPHE, mengurangi energi yang dibutuhkan untuk pemanasan ulang selama dehumidifikasi. Karakterisasi awal pipa panas dilakukan dengan suhu udara masuk 45°C dan kecepatan udara 1,4 m/s. Eksperimen ini mengungkapkan peningkatan suhu puncak sebesar 6,4°C di sisi kondensor, menghasilkan pengurangan kelembapan relatif sebesar 20,7%. Penurunan suhu di sisi evaporator adalah 0,7°C. Penghematan energi maksimum sebesar 304,44 W dicapai pada suhu udara masuk ini dengan kecepatan udara 2,2 m/s. Untuk memahami kinerja pada kondisi suhu yang lebih rendah, pengujian lebih lanjut dilakukan pada suhu udara masuk 30°C, 35°C, dan 40°C. Variasi ini menunjukkan fleksibilitas HPHE berbentuk U dalam meningkatkan efisiensi dehumidifikasi di berbagai kondisi operasi. Efektivitas tertinggi yang diamati adalah 21,04%, menunjukkan potensi HPHE berbentuk U dalam meningkatkan efisiensi energi di sistem HVAC.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rafi Bagja Wirawan
Abstrak :
Indonesia memiliki suhu tinggi dan kondisi iklim lembab. Mengontrol kelembaban penting untuk memastikan lingkungan yang sehat, produktif, dan nyaman (Salarian et al., 2009). Saat ini, sistem berbasis siklus kompresi uap mendominasi industri pendinginan di seluruh dunia, namun penggunaan Sistem Kompresi Uap (Vapor Compression System) tidak efisien untuk menangani beban laten yang tinggi. Integrasi sistem liquid desiccant ke dalam sistem pendingin udara dapat mengurangi konsumsi energi hingga 30%, sehingga sistem pendingin pengering dapat menurunkan konsumsi energi (Salarian et al., 2009; Zhang et al., 2019). Penelitian ini mengkaji kinerja sistem liquid desiccant dengan memvariasikan distributor solusi untuk melihat kinerja dehumidifikasi dan rasio kebasahan (wetting ratio) dari two-row wavy fin and tube heat exchanger yang digunakan. Dalam sistem liquid desiccant ini, heat exchanger tipe sirip dan tabung (fin and tube) akan bersilangan dengan aliran udara secara horizontal dan aliran larutan secara vertikal. Dengan rasio kebasahan yang lebih baik dari larutan ke permukaan heat exchanger, fenomena perpindahan massa dapat ditingkatkan. Investigasi akan dilakukan dengan melihat kemampuan dehumidifikasi dari masing-masing distributor dan menggunakan metode image processing untuk melihat rasio kebasahan pada permukaan heat exchanger. Tiga pola distributor digunakan, dengan dehumidifikasi dan rasio kebasahan yang lebih baik diperoleh pola distributor kedua dengan rasio kelembaban 6,5 g/kg, 7,7 g/kg, dan 8,3 g/kg. ......Indonesia has a high temperature and humid climate condition. Controlling humidity is important for ensuring a healthy, productive, and comfortable environment (Salarian et al., 2009). Currently, vapor compression cycle-based systems dominate the worldwide cooling industry, however, the usage of a Vapor Compression System (VCS) is inefficient to deal with the high latent load. The integration of a desiccant dehumidification system into an air conditioning system can reduce energy consumption by up to 30%, thus desiccant cooling systems can lower energy consumption (Salarian et al., 2009; Zhang et al., 2019). This study investigates the performance of a liquid desiccant system with varying the solution distributor to see the dehumidification performance and wetting ratio of the two-row wavy fin and tube heat exchanger used. In this liquid desiccant system, the fin and tube heat exchanger will cross with airflow horizontally and the flow of the solution vertically. With a better wetting ratio of the solution to the surface of the heat exchanger, the mass transfer phenomena can be improved. The investigation will be carried out by looking at the dehumidification capabilities of each distributor and the image processing to see the wetting ratio to the surface of the heat exchanger. Three patterns of distributors are used, with better dehumidification and wetting ratio obtained by the second distributor pattern with Δ humidity ratio of 6.5 g/kg, 7.7 g/kg, and 8.3 g/kg.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faizal Abizar
Abstrak :
Proses dehumidifikasi udara adalah proses yang cukup penting dalam pengaplikasian sehari-hari maupun untuk keperluan industri. Proses dehumidifikasi sendiri memiliki ragam manfaat, lebih spesifik lagi pada sistem spray drying yang memiliki manfaat sangat besar terutama dalam bidang industri pengolahan makanan. Salah satu contoh pemanfaatan sistem spray drying adalah pada pengolahan susu cair menjadi susu bubuk siap seduh, . Pada penelitian yang dilakukan, pada sistem spray drying dengan menggunakan media air, dengan menggunakan variasi laju aliran udara masuk, perubahan temperatur udara masuk, dan perubahan temperatur udara keluar. Penelitian ini dilakukan pada ruangan yang suhu nya di kontrol setara dengan suhu udara luar ruangan. Penelitian dilakukan dengan batasan-batasan yang ada dan dikira sudah sesuai dengan kondisi tempat alat di operasionalkan. Proses pengolahan data dilakukan dengan metode Regresi dan mengecek titik Interpolasi pada garfik yang dihasilkan pada penelitian. Hasil penelitian ini mendapat bahwa laju pengeringan material berbanding terbalik dengan kelembaban udara kering. Pada penelitian lanjutan digunakan material Maltodextrin dan Gelatin dengan proses maltodextrin dengan tujuan untuk menguji berapa besar ukuran produk yang dihasilkan apabila menggunakan variasi tekanan yang berbeda. ......The process of air dehumidification is a process that is quite important in daily applications and for industrial purposes. The dehumidification process itself has various benefits, more specifically the spray drying system which has enormous benefits, especially in the food processing industry. One example of the use of a spray drying system is in the processing of milk into ready-to-brewed powdered milk. In the research conducted, the spray drying system uses air media, using variations in the inlet air flow rate, changes in inlet air temperature, and changes in outlet air temperature. This research was conducted in a room whose temperature is equivalent to the outdoor air temperature. The research was carried out with the existing limitations and was considered to be in accordance with the conditions in which the equipment was operated. The data processing is carried out by the Regression method and checks the Interpolation point on the resulting graph in the study. The results of this study found that the drying rate of the material is inversely proportional to the humidity of the dry air. In a follow-up study using Maltodextrin and Gelatin with the maltodextrin process with the aim of testing how large the size of the product is when using different pressure variations.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library