Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Abdullah Robbani
Abstrak :
Beberapa studi yang telah dilakukan sebelumnya menunjukkan bahwa minyak kelapa sawit dapat menghasilkan senyawa hidro karbon yang sebagian besarnya berupa bio-gasoline. Diantara cara yang dapat dilakuakn untuk mengolah minyak kelapa sawit adalah melalui teknologi Fluid Catalytic Cracking (FCC). Penggunaan teknologi konversi FCC saat ini juga telah dimanfaatkan untuk menghasilkan bahan bakar biofuel yang dihasilkan dari material minyak nabati. Grup riset AIR mengembangkan sebuah teknologi teknologi sistem FCC skala bench untuk mengolah minyak kelapa sawit menjadi bahan bakar nabati. Salah satu komponen penting dalam sistem FCC yang dikembangkan oleh grup riset AIR ini adalah condenser. Diperlukan sebuah desain yang dapat digunakan untuk mengkondensasi uap produk hasil proses sistem FCC. Studi ini akan membahas tentang desain baru condenser yang dapat menggantikan condenser yang lama agar kinerjanya lebih optimal. Desain bariu dihitung berdasarkan performa dari condenser yang lama kemudian dilakukan pernacangan berdasarkan analisis thermal.
Previous studies have shown that palm oil can produce hydro-carbon compounds, mostly bio-gasoline. Among the ways that can be done to process palm oil is through Fluid Catalytic Cracking (FCC) technology. The use of FCC conversion technology at this time has also been utilized to produce biofuel fuel produced from vegetable oil materials. The AIR research group developed a bench scale FCC system technology to process palm oil into biofuels. One of the important components in the FCC system developed by the AIR research group is the condenser. A condenser design is required that can be used to condense the product vapor from the process of the FCC system. This study will discuss about a new condenser design that can replace the old condenser for optimal performance. The new design is calculated based on the performance of the old condenser. The design is carried out based on thermal analysis.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marcellino Lorenzo
Abstrak :
Gasifikasi biomassa adalah proses konversi biomassa menjadi bahan bakar gas yang mempan bakar (CO, CH4, dan H2). Bahan baku untuk proses gasifikasi dapat berupa limbah biomassa, yaitu sekam padi, tempurung kelapa, potongan kayu, maupun limbah pertanian lainnya. Pada proses konversi secara termokimia, pemanfaatan biomassa sebagai sumber energi akan dibakar. Dalam proses pembakaran biomassa sebagai bahan bakar, rantai hidrokarbon pada biomassa yang dipilih akan terurai. Produk yang dihasilkan dari proses gasifikasi adalah gas mempan bakar yang disebut syngas (gas sintesis). Gas mudah bakar (gas combustible) yang dapat dimanfaatkan hanyalah CO, H2, dan CH4. Selama proses gasifikasi akan terbentuk daerah proses yang dinamakan menurut distribusi suhu dalam reaktor gasifier. Daerah-daerah itu, yaitu: Drying, Pyrolysis, Reduksi, dan Combustion. Selama pirolisis, kelembaban menguap pertama kali (100°C), kemudian hemiselulosa terdekomposisi (200-260°C), lalu selulosa (240-340°C), dan diikuti oleh lignin (280-500°C). Produk cair hasil pirolisis yang menguap mengandung tar dan PAH (polyaromatic hydrocarbon). Produk pirolisis umumnya terdiri dari tiga jenis, yaitu gas ringan (H2, CO, CO2, H2O, dan CH4), tar, dan arang. Tar dapat didefinisikan sebagai campuran hidrokarbon terkondensasi. Konsentrasi tar dalam sistem harus dibatasi dan terdapat beberapa cara untuk pengurangan tar. Kondensasi tar dipilih menjadi salah satu cara termudah dan termurah untuk mengurangi sebagian besar kandungan tar pada syngas. Untuk ini dibutuhkan kondensor untuk mengkondensasi tar. Saat tar mencapai dew point maka tar akan berubah fase dari gas menjadi cair. Tar yang mencair akan terpisah dari aliran syngas. Terdapat kandungan tar pada syngas yang diizinkan untuk masuk kedalam motor bakar yaitu 0,01-0,1 g/Nm3. Pada penelitian Mobile Biomass Gasifier sebelumnya, digunakan kondensor berjenis shell and tube dan memiliki efisiensi 75%-85%. Purwarupa tahap 3 ini memilih kondensor berjenis double pipe heat exchanger untuk mengurangi ukuran dengan efisiensi yang lebih tinggi. ......Biomass gasification is the process of converting biomass into combustible gas fuels (CO, CH4, and H2). The raw materials for the gasification process can be in the form of biomass waste, namely rice husks, coconut shells, wood chips, and other agricultural wastes. In the thermochemical conversion process, the use of biomass as an energy source will be burned. In the process of burning biomass as fuel, the chain of termination of the selected biomass will be unraveled. The product resulting from the gasification process is a combustible gas called syngas (synthesis gas). Combustible gas that can be used only CO, H2, and CH4. During the gasification process a process will be formed which starts according to the temperature distribution in the gasifier reactor. These areas are: Drying, Pyrolysis, Reduction, and Combustion. During pyrolysis, evaporate decomposed first (100°C), then hemicellulose is decomposed (200-260°C), then cellulose (240-340°C), and followed by lignin (280-500°C). The liquid product resulting from the evaporation of pyrolysis contains tar and PAHs (polyaromatic hydrocarbons). Pyrolysis products generally consist of three types, namely light gases (H2, CO, CO2, H2O, and CH4), tar, and charcoal. Tar can be defined as a condensed mixture. The concentration of tar in the system must be limited and there are several ways to reduce tar. Tar condensation was chosen to be one of the easiest and cheapest ways to reduce most of the tar content in syngas. This requires a condenser to condense the tar. When the tar reaches the dew point, the tar will change phase from gas to liquid. The melted tar will separate from the syngas flow. There is a tar content in the syngas that is allowed to enter the combustion engine, which is 0.01-0.1 g/Nm3. In the previous Mobile Biomass Gasifier research, a shell and tube type condenser was used and has an efficiency of 75%-85%. This stage 3 prototype chose a double pipe heat exchanger condenser to reduce size with higher efficiency.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahlul Halli
Abstrak :
Penanganan beban thermal pada dunia industri sangat diperlukan. Sistem alat penukar kalor bisa dikembangkan pada sisi fluida yang digunakan dan desain pipa yang digunakan. Respon dalam bidang thermal adalah maraknya kembali perhatian akan pentingnya alat penukar kalor (heat exchanger). Sebuah alat penukar kalor yang baik harus ditunjang oleh koefesien perpindahan panas yang baik. Koefesien perpindahan panas sendiri di pengaruhi oleh bilangan Reynolds. Dalam penelitian ini, dilakukan rancang bangun sebuah alat penukar kalor tipe double pipe dengan variasi pada pipa air panas, dimana pada pipa luar adalah pipa baja karbon memiliki koefisien perpindahan kalor konduksi 54 W/m.K dan memiliki dimensi panjang pipa 1 m, diameter luar (Ø out) 88.6 mm, dan diameter. dalam (Ø in) 85 mm dan pipa dalam adalah pipa baja karbon memiliki koefisien perpindahan kalor konduksi 54 W/m.K dan memiliki dimensi panjang pipa 1.2 m, diameter luar (Ø out) 30 mm, dan diameter dalam (Ø in) 28 mm. Bedasarkan pengujian didapatkan grafik kenaikan nilai koefisien perpindahan kalor sebanding dengan kenaikan bilangan Reynolds. Profil kotak memiliki nilai koefisien perpindahan panas yang lebih tinggi jika dibandingkan dengan profil bulat. Pada perbedaan jenis aliran sangat berpengaruh terhadap nilai koefisien perpindahan kalor profil bulat, sedangkan pada profil kotak tidak begitu terlihat perbedaannya. ...... Handling of thermal load on the industrial world is indispensable. Heat exchanger system can be developed on the side of the fluid used and the design of pipe used. Response in the thermal field is widespread concern about the importance of reheat exchanger (heat exchanger). A good heat exchanger must be supported by a good heat transfer coefficient. Heat transfer coefficient itself is influenced by the Reynolds number. In this study, carried out design and construction of an appliance type double pipe heat exchanger with a variation on the hot water pipes, where the outer pipe is carbon steel pipe has a conduction heat transfer coefficient of 54 W / mK and has dimensions of 1 m length of pipe, outer diameter (Ø out) 88.6 mm, and diameter in (Ø in) 85 mm and pipe in carbon steel pipe is a conduction heat transfer coefficient of 54 W / mK and has dimensions of 1.2 m length of pipe, outer diameter (Ø out) 30 mm, and diameter in (Ø in) 28 mm. Based on the obtained testing the graph increases the heat transfer coefficient is proportional to the increase in Reynolds number. Profiles box has a heat transfer coefficient values are higher if compared to the rounded profile. In different types of flow greatly affect the heat transfer coefficient value rounded profile, whereas the profile box is not so pronounced.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1699
UI - Skripsi Open  Universitas Indonesia Library
cover
Muchamad Iqbal Bimo Arifianto
Abstrak :
Permasalahan pendinginan komponen elektronik semakin meningkat seiring peningkatan fluks panas yang dihasilkan oleh peralatan elektronik khususnya CPU komputer. Penggunaan heat pipe dalam pendinginan komponen elektronik tersebut menjadi salah satu solusi alternatif guna menyerap kalor yang dihasilkan. loop heat pipe (LHP) merupakan tanggapan terhadap tantangan yang berkaitan dengan permintaan teknologi untuk perangkat yang sangat panas dengan transfer yang efisien. Sementara itu loop heat pipe masih jarang dijumpai, eksperimen loop heat pipe menggunakan salah satu sisi full wick sintered powder. Lalu eksperimen ini dilakukan dengan penggunaan air dan udara sebagai pendingin pada kondensor telah dilakukan dan dihasilkan bahwa kondenser dengan tipe double pipe sebagai pendingin berupa air dapat mereduksi temperatur pada bagian evaporator paling besar, yakni 17.13oC hal ini dikarenakan pendinginan pada kondensor menggunakan air yang bersirkulasi dengan circulating thermostatic bath (CTB) sebagai pendingin menjadikan temperatur pada kondensor konstan. Namun kinerja loop heat pipe masih sangat berpengaruh pada gravitasi, maka dilakukanlah beberapa eksperiman terhadap posisi yang baik pada peletakan loop heat pipe, dan didapatkan bahwa posisi kondensor yang berada diatas evaporator secara Verikal atau pada sudut paling baik. Hal ini dikarenakan pada evaporator terdapat banyak fluida yang berfungsi sebagai penghantar dan pereduksi kalor. Dibahas juga pada pengaruh pada penggunaan nano fluida yang dapat mereduksi hambatan termal yang terjadi pada loop heat pipe pada daerah evaporator sampai dengan adiabatik lajur uap dengan pemakaian fluida kerja nano Al2O3-air 5% pada pembebanan 10 Watt dan 20 Watt yaitu masing-masing 0.56oC/Watt dan 0.38oC/Watt. Tetapi pada pembebanan 30 Watt fluida Al2O3-air 1% mempunyai hambatan termal terendah yaitu 0.88oC/Watt, namun hal ini masih lebih baik dalam penggunaan fluida air. Hal ini merupakan suatu indikasi bahwa Loop heat pipe yang baik adalah menggunakan pendingin berupa air dan diletakkan pada posisi tegak dengan kondensor berada diatas. Juga dibuktikan bahwa performa loop heat pipe dengan wick sintered powder lebih baik daripada straight heat pipe dengan wick screen mesh.
Problem of cooling electronic components has increased along the increase of heat flux generated by electronic equipment, especially computer CPU. The use of heat pipes in cooling electronic components has become one of the alternative solutions in order to absorb the heat generated. loop heat pipes (LHP) was a response to the challenges associated with demand for technology for devices that are very hot with an efficient transfer. Meanwhile, loop heat pipes are still rare, experimental loop heat pipe using one hand full sintered powder wick. Then the experiment was conducted with the use of water and air as a coolant in the condenser has been done and produced that double pipe type of condenser with a water cooling is greatest to reduce the temperature at the evaporator, that is 17.13oC this is because the cooler in the condenser using water that is circulated with circulating thermostatic bath (CTB) as the cooling and makes the temperature at condenser is constant. But the performance of loop heat pipes are still very influential in gravity, we perform some experiments on a good position in the laying of loop heat pipes, and found that the position of the condenser is located above the evaporator vertically or at an angle 90 ° is the best position. This is because there are a lot of fluid on evaporator which serves as Conductor and reducing heat. Discussed also the effect on the use of nano-fluid that can reduce thermal resistance that occurs in loop heat pipes in the evaporator region to the adiabatic vapor line with the use of working nanofluid Al2O3-air 5% on loading 10 Watt and 20 Watts respectively 0.56oC/Watt dan 0.38oC/Watt. But at the 30 Watt loading Al2O3-water 1% fluid has the lowest thermal resistance that is 0.88oC/Watt, but this is still better in the use of nano fluid rather than water fluid. This is an indication that the loop heat pipe is a good to be use on cooling water and placed in an upright position with a condenser on top. Also proved that loop heat pipe performance with wick sintered powder better than straight heat pipe with wick screen mesh.
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1638
UI - Skripsi Open  Universitas Indonesia Library