Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Brilyana Bela Islami
"ABSTRAK
Klorinasi adalah pengolahan air limbah tersier yang berfungsi untuk menginaktivasi patogen dan zat organik yang umumnya diletakkan pada unit terakhir WWTP dan WTP. Terdapat dua jenis klorinasi, yaitu klorinasi satu tahap OSC dan klorinasi dua tahap TSC . Tujuan dari penelitian ini adalah membandingkan efisiensi penyisihan total koliform dan zat organik pada metode OSC dan TSC untuk menghasilkan air baku untuk air bersih. Variabel bebas dari penelitian ini adalah dosis optimum, waktu interval, dan rasio dosis pembubuhan desinfektan. Klorinasi dilakukan dengan sistem batch dan skala laboratorium pada sampel yang berasal dari efluen WWTP 2 Jababeka yang telah mengalami proses adsorpsi karbon aktif. Desinfektan yang digunakan adalah Ca OCl2 . Hasil menunjukkan bahwa dosis optimum OSC sebesar 80 mg/L. Sedangkan, kondisi optimum pada TSC dicapai pada rasio pembubuhan 5:1 dan waktu interval 50 detik. Dibandingkan dengan OSC, TSC dapat meningkatkan efisiensi untuk parameter COD, BOD, zat organik KMnO4 , dan total koliform berturut-turut sebesar 12 , 35 , 24 , dan 0,39-log reduction. Akan tetapi, metode OSC dan TSC tidak memengaruhi konsentrasi amonia secara signifikan. TSC dapat mereduksi pembentukan THM hingga 13 . Menurut PP No. 82 Tahun 2001 Kelas I, parameter COD dan BOD belum memenuhi baku mutu, tetapi untuk parameter total koliform telah memenuhi baku mutu. Sedangkan menurut Permenkes No. 416 Tahun 1990 tentang Kualitas Air Bersih, parameter zat organik dan total koliform pada air perpipaan belum memenuhi baku mutu, tetapi total koliform untuk air bukan perpipaan telah memenuhi baku mutu. Dengan demikian, efluen TSC tidak dapat digunakan sebagai air bersih secara langsung dan diperlukan pengolahan terlebih dahulu sebelum konsumsi melalui WTP 2 Jababeka.

ABSTRACT
Chlorination is tertiary wastewater treatment to inactivate pathogen and remove organic substances, where generally placed on the last unit in WWTP and WTP. There are two methods of chlorination, namely One step Chlorination OSC and Two step Chlorination TSC . The purpose of this research was to compare disinfection efficiency of total coliform and organic substances in effluent of OSC and TSC, in order to produce raw water for clean water. Independent variables of this research were dosage, time interval, and dosage ratio of disinfectant. Chlorination were demonstrated in batch system and laboratory scale for effluent of WWTP 2 Jababeka, which had adsorption beforehand. Ca OCl2 was used as disinfectant substance. Results showed that the optimum dosage for OSC is 80 mg L. Meanwhile, TSC attained its highest effiency at time interval of 50s and dosage ratio of 5 1. Compared to OSC, TSC could enhance disinfection efficiency for COD, BOD, organic matter KMnO4 , and total coliform up to 12 , 35 , 24 , and 0,39 log reduction respectively. However, OSC and TSC did not significantly affect ammonia concentration. Also, THM formation could be reduced up to 13 by using TSC method. According to Government Regulation No.82 2001 for Class I, COD and BOD have not met the quality standards, however total coliform has fulfilled the standards. Whereas, according to Minister of Health Regulation No. 416 1990 for Quality of Clean Water, organic matter and total coliform for pipeline water did not met the standards. However, total coliform for water non piped water has complied the standard. Thus, efluent of TSC can not be directly used for clean water in public use and required processing before consumption through WTP 2 Jababeka."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Achmad Shofi
"Proses reduksi selektif dan pemisahan magnetik bijih nikel kadar rendah dengan kandungan Ni, Fe, Mg, dan Si masing-masing sebesar 1,4 , 50,5 , 1,81 , dan 16,5 telah dilakukan melalui mekanisme dua tahap peningkatan panas dengan penambahan aditif Na2SO4 dan NaCl. Na2SO4 dan NaCl diketahui mampu membebaskan nikel dan besi dari fasa olivin dan juga menekan metalisasi besi dengan proses sulfidasi, kloridasi, dan segregasi. NaCl yang ditambahkan bertujuan untuk menggantikan sebagian Na2SO4 untuk mengurangi kandungan sulfur sisa pada konsentrat yang dihasilkan. Penahanan pada temperatur awal pre-heating dilakukan untuk memaksimalkan reaksi reduksi nikel dalam fasa goethit sekaligus menekan reduksi besi oksida, sedangkan penahanan pada temperatur lanjut reduksi bertujuan untuk proses pembebasan nikel pada fasa lizardit dan mendukung pertumbuhan partikel feronikel dengan mekanisme aglomerasi partikel pada fasa leleh sistem Fe-FeS eutektik yang terbentuk. Oleh karena itu, kedua perlakuan pemanasan tersebut dapat meningkatkan kadar, perolehan dan derajat metalisasi dari nikel. Hasil optimal didapatkan pada bijih hasil reduksi dengan penambahan 11 satu stoikiometri arang cangkang sawit, 10 Na2SO4, dan 10 NaCl pada temperatur pemanasan awal 500 C selama 90 menit, diikuti dengan pemanasan lanjut selama 90 menit pada temperatur 1150 C, yang menghasilkan konsentrat feronikel dengan kadar dan perolehan nikel masing-masing sebesar 5,53 dan 85,89 , serta derajat metalisasi nikel sebesar 93,69 . Ukuran partikel feronikel yang dihasilkan pada sampel tersebut berukuran 61,75 m, jauh lebih besar dibandingkan ukuran butir sampel tanpa penambahan aditif atau temperatur reduksi yang lebih rendah 1050 C yaitu berturut-turut sebesar 5 m dan 28,5 m. Fasa-fasa yang terbentuk dengan penambahan aditif Na2SO4 dan NaCl yaitu kamasit FeNi , wustit FeS , fayalit, dan nepheline, yang merupakan indikasi berjalannya proses optimasi reduksi selektif dengan memaksimalkan pembebasan nikel dari fasa olivin dan menekan pembentukan logam besi sehingga perolehan, kadar, dan derajat metalisasi nikel meningkat.

Selective reduction and magnetic separation process of low grade nickel ore with Ni, Fe, Mg and Si contents of 1.4 , 50.5 , 1.81 and 16.5 has been conducted with two stage thermal upgrading mechanism with addition of Na2SO4 and NaCl. These two additives is known to be capable of liberating nickel and iron from olivine phase, as well as suppressing iron metallization with sulphidation, chloridization and segregation process. The addition of NaCl was aimed to substitute some part of Na2SO4 to reduce residual sulphur content of the produced ferronickel concentrate. The retention of roasting at initial temperature pre heating was done to maximize reductive reaction of nickel within goethite phase and to suppress the reduction of iron oxide, while the retention of roasting at final temperature reduction was done to focus the nickel liberation from lizardite phase and to promote ferronickel particle growth using agglomeration mechanism within the formed molten phase of Fe FeS eutectic system. Therefore, these two thermal treatment could improve the grade, recovery and metallization of nickel. The optimal result obtained was the reduced ore with 11 palm kernel shell reductor, 10 Na2SO4, and 10 NaCl at initial roasting temperature of 500 C for 90 minutes, followed by final roasting temperature of 1150 C for 90 minutes which resulted ferronickel concentrat with 5.53 grade, 85.9 recovery and 93.86 metallization. The resulting particle size of the aformentioned sample is 61.75 m, far bigger compared to sample without additives or lower reducing temperature 1050 C which is 5 m and 28.5 m, respectively. The formed phase of the reduced ore with the addition of Na2SO4 and NaCl was kamacite FeNi , wustite FeS , fayalite and nepheline, which indicates the optimization process of selective reduction through maximalizing nickel liberation from olivine and suppresing the formation of metallic iron resulting in improved nickel grade, recovery and metallization."
Depok: Fakultas Teknik Universitas Indonesia, 2018
T49604
UI - Tesis Membership  Universitas Indonesia Library
cover
Benediktus Ma’dika
"Baterai litium-ion merupakan teknologi yang menjanjikan untuk mendukung transisi energi berbasis fosil ke energi baru terbarukan pada kendaraan listrik yang ramah lingkungan karena kinerja penyimpanan energinya yang unggul. Penelitian material energi untuk baterai litium-ion terus dilakukan secara intensif hingga saat ini. Untuk mendukung hal tersebut, penelitian ini mensintesis Lithium Lanthanum Titanate ( LLTO, dengan formula kimia Li0,5La0,5TiO3) dari kombinasi lantanum oksalat lokal (95,296 % atomik lanthanum), litium karbonat komersial dan titanium oksida komersial melalui solid-state reaction yang sederhana dan berbiaya rendah. Dalam metode ini, digunakan kalsinasi dua tahap di mana tahap pertama dilakukan pada temperatur 800 °C selama 8 jam di bawah kondisi atmosfer biasa sedangkan tahap kedua dilakukan pada tiga variasi temperatur yakni 1.050 °C, 1.150 °C dan 1.250 °C selama 12 jam di bawah kondisi atmosfer biasa yang masing-masing menghasilkan 97,98, 98,141 dan 92,328 % berat Li0,5La0,5TiO3. LLTO yang disintesis pada temperatur kalsinasi kedua 1.150 °C menunjukkan luas permukaan dan volume pori yang paling besar, butir-butir tersusun secara acak dan memiliki sifat pseudokapasitansi sehingga memberikan kapasitas spesifik yang tinggi sebesar 17.120 mAh g-1 (pada C-rate 0,5 dan potensial yang mendekati nol) dan konduktivitas yang tinggi sekitar 2,45 × 10 -2 S/cm. LLTO ini menjanjikan untuk digunakan sebagai anoda potensial rendah dalam baterai litium-ion.
......Lithium-ion battery is one of the promising technologies to support the transition of fossil-based energy to renewable energy in eco-friendly electric vehicles due to its superior energy storage performance. Research on energy materials for lithium-ion batteries continues to be carried out intensively to date. To support this plan, this research has synthesized Lithium Lanthanum Titanate (LLTO, with a chemical formula Li0,5La0,5TiO3) from a combination of local lanthanum oxalate (95.296 % atomic of lanthanum), commercial lithium carbonate, and commercial titanium oxide through a low-cost and simple solid-state reaction. In this method, a two-stage calcination method was used, where the first step was carried out at a temperature of 800 °C for 8 h under atmospheric conditions while the second step was carried out at three different temperatures namely 1050 °C, 1150 °C and 1250 °C for 12 h under atmospheric conditions yielding 97.98, 98.141 and 92.328 weight % of Li0,5La0,5TiO3, respectively. The LLTO synthesized at the second calcination temperature of 1150 °C exhibited largest surface area and pore volume, randomly arranged particles, and pseudocapacitive feature as to provide a high specific capacity of 17,120 mAh g-1 (at a C-rate 0, 5 and near-zero potentials) and a high conductivity of 2.45 × 10 -2 S/cm. This LLTO holds promise for use as a low-potential anode in lithium-ion batteries."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faris Fadli
"Di balik berbagai keunggulan metode stir casting, terdapat beberapa masalah di baliknya seperti kesulitan mencapai keseragaman distribusi penguat, keterbasahan penguat oleh lelehan logam, dan pembentukan porositas. Ketiga masalah ini dapat mengurangi kekuatan mekanis dari komposit yang dihasilkan. Oleh karena itu, ditemukan metode stir casting dua tahap untuk meningkatkan distribusi partikel dan mengurangi porositas dengan menambahkan penguat saat logam berada di fasa semi-padat. Pada penelitian ini dilakukan dua metode, yaitu metode konvensional dan dua tahap yang dikomparasikan pada komposit Al- 3Zn-1.6Mg berpenguat 7 % volume SiC untuk mengetahui pengaruhnya terhadap distribusi partikel dan pembentukan porositas akibat aglomerasi. Setelah pengecoran dengan metode stir casting konvensional dan dua tahap setelah itu komposit dihomogenisasi pada temperatur 400 °C selama 4 jam. Selanjutnya dilakukan karakterisasi berupa pengujian komposisi kimia, pengamatan struktur mikro menggunakan mikroskop optik, dan Scanning Electron Microscope (SEM) – Energy Dispersive Spectroscopy (EDS), pengujian kekerasan Rockwell, dan pengujian porositas. Penerapan metode stir casting dua tahap pada komposit mengecilkan ukuran SDAS menjadi 16.5 μm, meningkatkan jumlah volume SiC yang tercampur menjadi 7.63 %, menurunkan persentase porositas menjadi 1.33 %, dan meningkatkan nilai kekerasan menjadi 29 HRC. Peningkatan nilai kekerasan komposit metode stir casting dua tahap diakibatkan oleh ukuran SDAS yang lebih kecil, persentase porositas yang lebih sedikit, banyaknya volume SiC yang tercampur dalam matriks aluminium dan diikuti dengan distribusi yang baik, sehingga sangat sedikit ditemukan impregnation porosity.
......Behind the various advantages of the stir casting method, there are several problems behind it such as difficulty in achieving uniform distribution of reinforcement, wettability of the reinforcement by molten metal, and the formation of porosity. These three problems can reduce the mechanical strength of the resulting composite. Therefore, a two-step stir casting method was found to improve particle distribution and reduce porosity by adding reinforcement when the metal is in the semi-solid phase. In this study, two methods were compared, namely the conventional method and the two-step method in an Al-3Zn-1.6Mg composite with 7 % volume SiC reinforcement to determine its effect on particle distribution and the formation of porosity due to agglomeration. After fabricated by two step stir casting method the composites were homogenized at 400 °C for 4 hours. Characterization was carried out in the form of chemical composition testing, microstructure observations byusing optical microscope, and Scanning Electron Microscope (SEM) – Energy Dispersive Spectroscopy (EDS), Rockwell hardness testing, and porosity testing. The application of the two-step stir casting method on composites reduced the SDAS size to 16.5 m, increased the volume of SiC mixed to 7.63 %, decreased the percentage of porosity to 1.33 %, and increased the hardness value to 29 HRC. The increase in the hardness value of the two-step stir casting method was caused by the smaller SDAS size, the smaller percentage of porosity, as well the large volume of SiC mixed in the aluminum matrix and followed by a good distribution, so that very little impregnation porosity was found."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rusydi
"Penelitian sebelumnya tentang sintesis hidrokarbon fraksi C3 dan C4 dari minyak kelapa sawit (CPO) menggunakan katalis zeolit RCC (Residue Catalytic Cracking) menunjukkan adanya kompetisi reaksi antara perengkahan gugus C=O dan hidrokarbon rantai panjang. Pada penelitian ini dilakukan perengkahan katalitik dua tahap agar menghindari kompetisi reaksi sehingga dapat mengoptimalkan yield C3-C4. Reaksi tahap pertama dilakukan pada suhu 350_C dan tahap kedua pada 370_C. Penelitian ini dilakukan pada fasa cair dan tekanan atmosfer menggunakan katalis zeolit RCC. Hasil penelitian ini menunjukkan bahwa perengkahan katalitik dua tahap tidak dapat menghindari terjadinya kompetisi reaksi perengkahan gugus C=O yang menghasilkan CO2 dan perengkahan hidrokarbon rantai panjang yang menghasilkan C3 dan C4 karena katalis memiliki selektifitas yang hampir sama. Pada tahap pertama dan kedua selalu terdapat produk hidrokarbon C3-C4 dan CO2. Pada penelitian ini didapatkan yield hidrokarbon C3 dan C4 sebesar 18% volum pada rasio massa CPO/katalis 75:1. Didapatkan pula katalis mengalami deaktivasi pada 20 menit waktu perengkahan. Sehingga untuk mengoptimalkan produk C3-C4 katalis harus diregenerasi setiap 30 menit.

Previous Research about synthesis hydrocarbon C3 and C4 fraction from palm oil (CPO) using zeolite catalytic cracking shows existence of reaction competition between C=O function cracking and long chain hydrocarbon cracking. In order to avoid competition reaction which mention above, this research use two stage zeolite catalytic cracking reaction. First stage happens at 350_C and second stage at 370_C. This research is conducted at liquid phase and atmosphere pressure uses RCC (Residue Catalytic Cracking) zeolite catalyst. This research result indicates that two stage zeolite catalytic cracking reaction can't avoid reaction competition between C=O function cracking produce CO2 and long chain hydrocarbon cracking produce C3 and C4. This result happens because catalyst has almost same selectivity. CO2 and C3-C4 always be produced in first stage and second stage. This research got 18% volume C3 and C4 at CPO/catalyst mass ratio 75:1. Beside that, research found that catalyst was deactivated after 20 minute at cracking temperature. Base on this fact, catalyst must be regenerated every 30 minutes to optimize C3 and C4 yield."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52242
UI - Skripsi Open  Universitas Indonesia Library