Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Kania Dyah Nastiti
"Perancangan ini membahas tentang perancangan kapal powership untuk mengatasi defisit listrik pada daerah Kupang, Nusa Tenggara Timur. Perancangan ini ditujukan untuk mengetahui rancangan kapal powership yang baik untuk perairan Nusa Tenggara Timur serta mengetahui nilai efisiensi dan ekonomi dari berbagai macam campuran udara-gas dari mesin dual fuel yang digunakan sebagia pembangkit listrik di perancangan ini. Perancangan dilakukan dengan studi literatur dan perhitungan rumus untuk mengetahui nilai-nilai untuk prarancangan kapal (ukuran utama, stabilitas, beban muatan), desain lines plan dan general arrangement, ukuran konstruksi, nilai efisiensi dan ekonomi mesin dual fuel. Ukuran utama kapal powership yang dibuat adalah displacement 18692.326 ton dengan panjang keseluruhan 159.079 m, panjang antara perpendicular 152.717 m, lebar 18.715 m, tinggi 10.3973 m dan draft 7.4861 m. Kapal ini dapat mengangkut 10 buah mesin pembangkit listrik dual fuel dengan kapasitas mesin masing-masing 12 MW. Hal ini dikarenakan defisit daerah kupang NTT berdasarkan data rasio elektrifikasi tahun 2010 yang dikeluarkan oleh PLN adalah 120 MW. Semakin besar gas yang dgunakan dalam mesin dual fuel maka akan memperkecil kecepatan putaran yang dibutuhkan mesin pada output maksimum. Pada output minimum, massa gas yang diinjeksikan tidak akan terlalu mempengaruhi, sehingga kecepatan putaran yang dibutuhkan tidak akan banyak berubah dan cenderung konstan pada masing-masing rasio Z. Untuk menghasilkan output maksimum dengan biaya yang minimum sebaiknya digunakan gas yang lebih banyak yang akan menyebabkan kecepatan putaran rendah.

This design project discusses the powership design to overcome the power defisit in the area of Kupang, East Nusa Tenggara. This intended to determine the best design of powership for the waters of East Nusa Tenggara as well as knowing the efficiency and economics of various kinds of diesel oil-gas mixture of dual fuel engines are used in this design. The design is done with the study of literature and calculation formula to determine the values for vessel pre-design (primary measure, stability, payload), design lines and general arrangement plan, the size of the construction, the value of economic efficiency of dual fuel engines. The main measure powership ship made is 18692.326 tons displacement with an overall length of 159 079 m, the length between the perpendicular 152 717 m, width of 18 715 m, height 10.3973 m and 7.4861 m draft. This ship can carry 10 pieces of dual fuel engine power with engine capacity 12 MW each. This is because the area Kupang NTT deficit based on 2010 electrification ratio data issued by PLN is 120 MW. The greater natural gas used in dual fuel engines will reduce engine speed required at maximum output. At minimum output, the mass of injected gas will not affect, so that the required speed of rotation will not change much and tend to be constant in each ratio Z. To produce maximum output at minimum cost should be used more gas that will cause the speed low round."
Depok: Universitas Indonesia, 2016
S65966
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tyas Kartika Sari
"Penurunan operasi pembangkit listrik PLTD Pesanggaran yang disebabkan oleh derating, tingkat efisiensi rendah, tingkat emisi dan kebisingan yang tinggi telah menimbukan masalah kelistrikan di Bali. Selain itu, PLTD Pesanggaran juga masih menggunakan bahan bakar minyak (single fuel) dimana biaya pokok produksi energi listrik meningkat seiring naiknya harga bahan bakar HSD (High Speed Diesel). Oleh sebab itu, untuk mempertahankan suplai listrik di Bali tetap terpenuhi, pemilik perusahaan melakukan efisiensi melalui program diversifikasi energi.
Pada tahun 2012, sebuah perusahaan konsultan telah dipilih untuk melakukan kajian FS (feasibility study) untuk menilai kelayakan operasi pembangkit. Kajian tersebut menyarankan agar perusahaan melakukan assets retirement without abandonment untuk PLTD Pesanggaran yaitu dengan melakukan penggantian (replacement) pembangkit lama dengan pembangkit baru yang menggunakan dual fuel engine.
Metode yang digunakan adalah perhitungan biaya COE, LCC dan economic life dari pembangkit lama maupun pembangkit baru. Penelitian menggunakan data amatan PLTD Pesanggaran, di Bali. Dengan metode tersebut dapat menghasilkan suatu model management tools untuk menentukan kelayakan keekonomiannya. Model management tools tersebut dapat dipakai untuk mempermudah pengambilan keputusan di kasus-kasus serupa pada pembangkit listrik PLTD.

The decline in diesel power plant operation Pesanggaran caused by derating, the level of low efficiency, emissions and noise levels are high already raises the problem of electricity in Bali. In addition, diesel Pesanggaran also still use fuel oil (single fuel) in which electrical energy production cost increases with rising fuel prices HSD (High Speed Diesel). Therefore, to maintain the supply of electricity in Bali remains unfulfilled, the owner of the company to improve efficiency through energy diversification program.
Additionally in 2012, a consulting firm has been selected to conduct a study FS (Feasibility Study) to assess the feasibility of plant operation. The study recommends that companies perform asset retirement without abandonment to diesel Pesanggaran by performing replacement (replacement) old plant with a new plant that uses a dual fuel engine.
A methodology is needed to conduct research studies both technical and economical feasibility of the concept. The study used data Pesanggaran diesel observations, in Bali. The methodology can produce a model management tools to determine its economic feasibility as well as to perform sensitivity testing of each parameter related. Model management tools can be used to facilitate decisionmaking in similar cases in the diesel power plant.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43702
UI - Tesis Membership  Universitas Indonesia Library
cover
Fahd Naufal Murtado
"ABSTRAK
Gagasan untuk mengonversi mesin kapal berbahan bakar High Speed Diesel HSD atau solar menjadi bahan bakar ganda dual-fuel retrofit, terkhusus untuk kapal penumpang merupakan sebuah ide yang baru. Kementrian Perhubungan telah mempertimbangkan keuntungan dan kerugian dari segi materiil menjalankan proyek ini namun, belum ada analisis performa mesin yang dilakukan oleh Kementrian Perhubungan untuk dapat meyakinkan apabila proyek ini berhasil dari segi ekonomi dan teknik. Penulis merasa bahwa menganalisis dari perubahan performa diesel dual fuel perlu dilakukan agar mengetahui aspek pertimbangan lain dalam mengkonversi single diesel menjadi diesel dual fuel pada kapal milik Kementrian Perhubungan. Dalam melakukan analisis ini, data dari satu kapal milik Kementrian Perhubungan. dikumpulkan dan dianalisis, dan juga penulis menggunakan software Ansys dan juga jurnal-jurnal yang berkutat pada tema dual fual agar penelitian ini dapat meminimalisir besar error yang dapat terjadi. Hasil dari analisis menunjukan karakteristik performa yang berbeda dari mesin dual fuel pada saat mesin ini di operasikan pada mode dual fuel dimana pada campuran 60 LNG memiliki performa power, torsi, SFC, dan efisiensi termal lebih baik dibandingkan campuran lain dan pada mode diesel itu sendiri dikarenakan LNG memiliki kandungan LHV yang lebih besar dibandingkan nilai LHV yang dimiliki oleh bahan bakar diesel.

ABSTRACT<>br>
The idea of converting a High Speed Diesel HSD or dual fuel engine into a dual fuel retrofit, especially for passenger ships is a new idea. Ministry of Transportation. has considered the advantages and disadvantages in terms of material run this project but, there is no analysis of engine performance conducted by Ministry of Transportation. to be able to convince if the project is successful in terms of economics and engineering. The author feels that analyzing the change of dual fuel diesel performance needs to be done in order to know other aspect consideration in converting single diesel to diesel fuel dual diesel on ship owned by Ministry of Transportation.. In conducting this analysis, data from one ship belonging to Ministry of Transportation. were collected and analyzed, and also the author uses Ansys software and also journals that focus on dual fual themes so that this research can minimize the amount of error that can happen. The results of the analysis show different performance characteristics of the dual fuel engine when the engine is operated in dual fuel mode with the best miture at 60 LNG have better power, torque, SFC, and thermal efficiency performance than other miture and diesel itself."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendra Fadholi Adi Prabowo
"Fluktuasi dari harga minyak dan crude palm oil (CPO) pada dekade terakhir menyebabkan masyarakat beralih menggunakan energi baru. Solusi alternatif adalah energi terbarukan dan energi fosil lainnya. Opsi energi terbarukan membutuhkan waktu yang lama untuk penelitian potensi energi lokal. Sehingga, energi fosil lain yang dipilih sebagai solusi. Pembangkit yang lama masih menggunakan biodiesel sebagai bahan bakar utama dan pembangkit yang baru dibangun memiliki spesifikasi dual fuel reciprocating engine. Mesin dual fuel dapat beroperasi dengan bahan bakar biodiesel atau gas untuk menghasilkan energi listrik. Pembangkit yang baru saat ini masih menggunakan biodiesel untuk operasi. Pada study ini, kajian ekonomi dari gas (LNG) sebagai bahan bakar utama akan dibandingkan dengan biodiesel. Total investasi dari fasilitas regasifikasi dan bahan bakar LNG akan dibandingkan dengan operasi dengan bahan bakar biodiesel selama 20 tahun. Variabel yang digunakan adalah capacity factor pembangkit, eskalasi beban listrik pelanggan, interest rate dan regasification cost. Metode analisis finansial IRR, NPV dan payback period digunakan untuk mengetahui kelayakan investasi fasilitas. Variabel tetap yang digunakan dalam perhitungan CAPEX, OPEX, kurs dollar, Kalori gas, heat rate, interest rate dan pajak. Hasil disebut layak jika tarif LNG dapat lebih rendah 20% dibanding tarif biodiesel (B20). Perhitungan analisis finansial terhadap fasilitas LNG dengan tarif regasifikasi $4,5/MMBtu menunjukan IRR 10,77%, NPV $16.611.452 dan payback period 12 tahun 9 bulan. Nilai IRR lebih besar dari Minimum Attractive Rate of Return (MARR) 10%. NPV bernilai $16.611.452 dan Payback period menunjukan investasi layak secara ekonomi. Alternatif menggunakan LNG dapat mengurangi biaya bahan bakar pembangkit. Eskalasi gas 3% pertahun memberikan tarif baru bahan bakar pembangkit sebesar Rp. 2.190/ kWh. Nilai tersebut memberikan pernghematan 22% dibandingkan tarif biodiesel sebesar Rp. 2.824/ kWh. Eskalasi gas 2% pertahun dapat memberikan pernghematan 27% /kWh. Eskalasi gas 1% pertahun dapat memberikan penghematan 31% / kWh. Hasil perhitungan biaya bahan bakar LNG dapat menghemat lebih dari 20% dibanding biodiesel. Kesimpulannya study finansial dari fasilitas regasifikasi LNG di lokasi ini adalah layak.

The fluctuation of oil prices and crude palm oil (CPO) in the last decade challenges peoples to use new energy. Alternative solutions are renewable energy and other fossil energy. The renewable energy option needs more time studies in the local energy potential. Hence, another fossil energy is one of the solutions. The existing Power Plant used biodiesel as fuel, and the new Power Plant specification is dual fuel reciprocating engine. The dual-fuel engine can use biodiesel or gas to generate electricity. The new Power Plant still used Biodiesel (B20) for operation. In this study, the economic assessment of gas (LNG) as the primary fuel compared to biodiesel. Total investment cost of LNG Regasification Plant and LNG fuel cost compared to biodiesel operation expenditure cost for 20 years. The variables are a capacity factor, customer load escalation, interest rate, and regasification cost. Financial analysis method IRR, NPV, and Payback period used as investment feasibility of regasification plant. Fix variables consist of CAPEX, OPEX, Dollar rate, Gas Calorific Value, heat rate, interest rate, and Tax. The result is feasible if the LNG tariff lowers 20% than the biodiesel (B20) tariff. The financial analysis of the LNG plant used regasification tariff $4,5/MMBtu result are IRR 10,77%, NPV $16.611.452, and payback period 12 years 9 months. IRR’s value is higher than the Minimum Attractive Rate of Return (MARR) 10%. The NPV is $16.611.452 and the payback period of 12 years 9 months show the investment is economically justified. The alternative using LNG reduces fuel expenditure. Escalation of gas price 3% per year show new tariff of the power plant approx. Rp. 2190 / kWh. This value provided savings approx. 22% than biodiesel tariff Rp. 2.824/ kWh. Escalation of gas price 2% per year provided savings 27%/ kWh. Escalation of gas price 1% per year provided savings 31%/ kWh. The result of the LNG fuel price calculation provided savings of more than 20% from biodiesel fuel price. The conclusion is the study of the LNG regasification plant in Southeast Maluku is feasible. "
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wirawan
"Laporan ini merupakan tugas akhir penulis dalam studinya di Queensland University of Technology (QUT), Brisbane, Australia. Penulis bergabung ke dalam tim projek Dual Fuel Engine dengan pengawasan Dr. Richard Brown yang berpusat pada penelitian, perancangan, pelaksanaan dan mengoptimalkan system dual fuel yang ditemukan dan dipatentkan (7,000,573 B2) oleh Mr. Uli Kruger. Di dalam tim ini, setiap anggota memiliki kontribusi masing-masing guna mengembangkan projek tersebut.
Projek penulis memusatkan pada beberapa hal, sebagai berikut: testing dual fuel engine, kaliberasi ethanol injector dan design heat exchanger. Tujuan utama dalam projek penulis adalah untuk merancang heat exchanger untuk mesin Dual Fuel yang digunakan untuk experiment lebih lanjut. Dengan perhitungan thermodynamic yang akurat diharapkan rancangan heat exchanger ini bias menyediakan energy yang cukup untuk memanaskan ethanol menjadi gas di dalam system dual fuel tersebut.
Tujuan lain dari projek ini adalah menampilkan hasil dari experiment yang dilaksanakan pada bunlan Desember 2008 dan kalibrasi ethanol injector. Menganalisa performa mesin dan mengidentifikasi setiap masalah yang mungkin timbul dalam system dual fuel. Kaliberasi ethanol injector dilakukan untuk mengetahui apakah injector yang dipilih sesuai dengan system tersebut. Mesin yang digunakan dalam projek ini adalah Mesin diesel buatan Ford dengan kapasitas 2701CC, 4 Cilinder. Kecepatan rata-rata mencapai 2500rpm, dengan ukuran bore x stroke: 108.2 x 115 (mm), volume perindahan 1057 dan rasio kompresi 15.5:1. Mesin ini yang kemudian dimodifikasi dengan Kruger dual fuel system sehingga dapat menggunakan campuran diesel dan ethanol sebagai bahan bakar.
Penggunaan campuran Ethanol dengan diesel sebagai bahan bakar, atau bias juga disebut biodiesel diharapkan dapat menjawab masalah lingkungan yang ada pada saat ini. Masalah lingkungan ini yang mendorong penelitian untuk mengurangi kebutuhan dalam sumber energy yang tidak dapat diperbaharui. Mobil merupakan sumber karbon dioxida, gas rumahkaca yang utama penyebab pemanasan global. Dalam system Dual Fuel ini, diperlukan heat exchanger yang dapat menghasilkan energy yang sama untuk memanaskan ethanol di dalam system udara bahan bakar berdasarkan perhitungan dan rancangan yang sesuai. Perhitungan lain yang harus di pikirkan dalam rancangan adalah area pemasangan heat exchanger yang sangat terbatas.
Penulis mencoba menyelesaikan masalah di atas menggunakan design type double pipe. Pemilihan type ini didasari beberapa alas an, yaitu: designnya yang sederhana, kemudahan pemasangan, ukuran yang dapat disesuaikan dengan area yang ada, dan biaya yang murah. Ukuran yang digunakan dalam rancangan tersebut disesuaikan dengan keterbatasan area, yang kemudian dimodifikasi lebih lanjut guna mencapai hasil yang maksimal. Double pipe heat exchanger dalam bentuk tradisionalnya merupakan alat yang paling sederhana untuk mengalihkan panas antara dua cairan atau gas, terdiri dari pipa di dalam pipa dengan hubungan yang tepat untuk kedua cairan atau gas tersebut, seperti yang dapat dilihat pada gambar 2.1.Perhitungan rancangan heat exchanger untuk mesin yang digunakan sebagai pegujian akan diterangkan lebih lanjut pada Chapter 3."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51019
UI - Skripsi Open  Universitas Indonesia Library
cover
Bagus Anang Nugroho
"Dalam upaya memperoleh kondisi operasi kerja yang tepat, diperlukan upaya mengidentifikasi parameter kerja yang dominan dan mengoptimasikannya. Pengujian adalah metode yang umum dilakukan, hanya saja membutuhkan waktu lama dan biaya mahal. Alternatif lain yang dapat dilakukan adalah dengan melakukan permodelan numerik.
Struktur permodelan mesin diesel 4 langkah berbahan bakar ganda (Diesel Dual Fuel - DDF) diselesaikan dengan pendekatan model 1D/0D dengan menganggap kerangka permodelan 1D (1 dimensi) gas dinamis untuk proses pernafasan dan model 0D (0 dimensi) untuk proses dalam silinder. Termasuk dalam proses dalam silinder adalah model multi-zona packet untuk pembakaran didalam semprotan injeksi solar (spray) dan pembakaran gas-udara untuk pembakaran diluar spray. Analisa permodelan dilakukan pada setiap perubahan 1 derajat poros engkol. Sebagai antisipasi kesalahan intepretasi hasil, beberapa sumber kesalahan diluar fokus studi diminimalkan dengan cara mengaplikasikan model empiris yang diperoleh dari evaluasi data hasil pengujian.
Pada disertasi ini, fokus studi adalah pada model pembakaran gas-dara yang terjadi di luar zona spray. Terdapat perbedaan pendekatan penyelesaian pembakaran gas-udara yang ada. Tiga model dipilih pada disertasi ini yaitu model 0D single zona - Wiebe dan dua model 0D multizona yaitu model Turbulent Flame Propagation yang mengadopsi permodelan yang umum digunakan pada pembakaran penyalaan busi (SI Engine) dan model kimia kinetik yang mengaplikasikan konsep kesetaraan stoikhiometrik dengan penyelesaian berbantuan mekanisme detil reaksi CH4 (GRI Mech 3.0).
Hasil studi ditinjau dari konstanta koreksi, jumlah data pengkalibrasi konstanta koreksi dan kemampuan model dalam mengadopsi detil komposisi CNG diketahui bahwa (a) Terdapat variasi konstanta model Wiebe pada parameter kerja mesin yang berbeda. Penelitian ini berhasil memberikan korelasi umum Wiebe dengan mengkoreksi persamaan Wiebe dengan efisiensi pembakaran semprotan solar dan rasio durasi pembakaran. Korelasi ini selanjutnya dikalibrasi pada seluruh data pengujian untuk memperoleh linierisasi model. Secara implisit model sudah mencakup pengaruh detil komposisi CNG. (b) Model Turbulent Flame Propagation (TFP) disusun berdasar korelasi pembakaran turbulen yang umum digunakan dalam permodelan pembakaran mesin penyalaan busi (SI Engine). Model ini mampu mengimplimentasi detil komposisi CNG. Model dikalibrasi pada dua titik berbeda, satu mewakili putaran 1200 rpm dan selain 1200 rpm. Kalibrasi dilakukan untuk mengkoreksi sub-model burn time. (c) Pada permodelan kimia kinetik tidak diperlukan kalibrasi. Model kimia kinetik tidak dapat mengakomodasi detil komposisi CNG dikarenakan GRI Mech 3.0 hanya direkomendasi untuk pembakaran metana.
Hasil validasi kinerja dan emisi gas buang pada variasi putaran mesin, waktu injeksi solar, beban mesin, dan perbandingan rasio CNG menunjukkan ketiga model mampu memberikan prediksi trend yang memadai walaupun pada sedikit kasus terdapat trend yang berbeda. Hal ini dikarenakan adanya perbedaan akurasi dari ketiga model, dimana hasil validasi model Wiebe memberikan hasil paling mendekati, diikuti dengan model TFP dengan prediksi cenderung lebih besar, dan model kimia kinetik cenderung terlalu kecil."
Depok: Fakultas Teknik Universitas Indonesia, 2016
D2230
UI - Disertasi Membership  Universitas Indonesia Library
cover
Heru Priyanto
"Tesis ini merupakan upaya dalam mendukung program konversi bahan bakar minyak (BBM) ke bahan bakar gas (BBG) untuk kendaraan. Penelitian ini dilakukan pada mesin diesel konvensional berbahan bakar solar murni yang yang dimodifikasi dengan cara menambahkan kit konverter dan ECU. Kinerja mesin hasil pengontrolan waktu injeksi pada ECU pada daya mesin dan torsi yang sama, memberikan hasil yang cukup baik pada konsumsi bahan bakar, efisiensi mesin, dan aspek ekonomi. Dari hasil pengujian, efisiensi mesin meningkat rata-rata 5%,, konsumsi bahan bakar yang lebih irit dan aspek ekonomi dual fuel lebih baik dari sebelumnya. Kesimpulan yang dapat diambil dari penelitian ini adalah bahwa mesin diesel konvensional dapat dimodifikasi menjadi mesin dual fuel dengan instalasi kit konverter serta ECU, dimana perlu dilakukan pengaturan waktu injeksi supaya diperoleh daya mesin yang diharapkan. Hasil penelitian ini menjadi dasar untuk pengembangan pengontrolan waktu injeksi CNG pada mesin diesel dual fuel melalui ECU yang mengacu pada daya mesin dengan tetap memiliki keunggulan pada konsumsi bahan bakar, efisiensi mesin, dan aspek ekonomis.

This thesis is an effort for supporting government program on fuel conversion from oil to gas for vehicles. This research was performed on modified conventional diesel engine using converter kit and ECU installation. Engine performances obtained were engine power, fuel consumption, engine efficiency, and cost-effectiveness. The result showed that engine efficiency increased approximately 5%, with saving fuel consumption, and better cost-effectiveness produced by dual fuel. Consequently, conventional diesel engine could be modified into dual fuel diesel engine by installing converter kit and ECU, which is needed to control injection time in order to achieve engine power as required. The results could be preliminary data to develop ECU in diesel dual fuel which preserves engine power as potent as original conventional diesel engine specifications with remaining privileges on fuel consumption, engine efficiency, and cost-effectiveness."
Depok: Universitas Indonesia, 2012
T30961
UI - Tesis Open  Universitas Indonesia Library
cover
R. Dandy Yusuf Maynardi
"ABSTRAK
PT. X telah melakukan studi kelayakan untuk rencana konversi dengan penggunaan 60 bahan bakar LNG pada salah satu lini kapalnya dengan trayek Tanjung Priok ndash; Makassar dengan memanfaatkan LNG Isotank tipe T75 ukuran 20 kaki 1 TEU , namun hanya terbatas pada kajian secara ekonomis. Untuk melakukan verifikasi bahwa rencana konversi ini benar-benar menguntungkan, penulis merasa perlu untuk melakukan kajian dari sudut pandang akademis, khususnya analisis karakteristik exergy fisik yakni laju perpindahan dan penghancuran exergy melalui dinding tangki akibat perpindahan kalor, serta karakteristik boil-off rate BOR dan boil-off gas BOG dari LNG yang dimuat, dilakukan dengan pendekatan closed system exergy balance dengan parameter kondisi pelayaran yang telah ditentukan, menggunakan persamaan empiris dari literatur dan model fisik dari tiga opsi tangki yang ditawarkan, dirancang dengan menggunakan COMSOL Multiphysics 5.1. Hasil analisis menunjukkan hubungan berkorelasi positif antara laju penghancuran exergy dengan nilai BOR dan BOG, bergantung pada nilai hambatan termal total Rtot akibat variasi material kulit dan insulasi dinding tangki yang mempengaruhi nilai kebocoran panas heat leak pada permukaan dalam dan luar dinding tangki. Skala kualitas disajikan di akhir pembahasan untuk meringkas parameter analisis yang bisa diukur dengan harga, yakni exergy cost dan biaya pengoperasian yang diperlukan forced vaporizer untuk mencapai BOR yang dibutuhkan.

ABSTRACT
PT. X has conducted a feasibility study for conversion plans with the use of 60 LNG fuel on one of its ship lines with Tanjung Priok Makassar route using LNG Isotank type T75 size 20 feet 1 TEU , but only limited to economical study. To verify that the conversion plan is really profitable, analysis of physical exergy characteristics i.e. the rate of exergy transfer and destruction through tank wall due to heat transfer, boil off rate and boil off gas from stored LNG is conducted by a closed system exergy balance approach with specified shipping conditions parameters, using the empirical equations of the literature and physical model of the three tank options offered, designed using COMSOL Multiphysics 5.1. The results show a positive correlation between exergy destruction rate with BOR and BOG values, depending on the total thermal resistance value Rtot due to material variation of shell and insulation of tank wall affecting the value of heat leak on the inner and outer surface of the tank wall. Quality scale is presented to summarize the analysis parameters that can be measured by cost, i.e. the exergy cost and operating costs required by forced vaporizer to achieve the required BOR."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library