Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
cover
Akhmad Sarif
"Perkembangan teknologi pemrosesan citra digital berjalan dengan pesat seiring dengan banyaknya pemanfaatan teknologi tersebut di berbagai bidang kehidupan manusia. Bidang kehidupan manusia yang memanfaatkan teknologi pemrosesan citra digital antara lain adalah: interasi kumputer-manusia, kesehatan, keamanan dan keselamatan, transportasi, robotika. Salah satu penerapan teknologi pemrosesan citra digital adalah pengenalan ekspresi wajah atau Facial Expression Recognition (FER). Wajah manusia dapat menampilkan berbagai macam ekspresi yang berbeda seperti ekspresi senang, sedih, marah, takut, terkejut, jijik dan sebagainya. Perbedaan ekspresi wajah ini menjadi tantangan bagi komputer untuk dapat mengenali dan membedakannya secara akurat. Salah satu teknologi yang digunakan pada aplikasi FER adalah CNN (Convolutional Neural Networks). Penelitian ini menggunakan model CNN AlexNet yang telah dilakukan perbaikan parameter (fine-tuning) untuk diaplikasikan pada pengenalan ekspresi wajah pada citra digital. Fine-Tuning yang dilakukan adalah dengan mengubah beberapa parameter dari model AlexNet. Parameter yang diubah antara lain: normalisasi input (dari normalisasi cross channel menjadi normalisasi batch), fungsi aktivasi dari ReLU (Rectified Linear Unit) menjadi Leaky ReLU, nilai dua buah dropout yang masing-masing bernilai 50% diubah menjadi 30% dan 20%. Program pengenalan ekspresi wajah yang dibuat kemudian diaplikasikan tearhadap dua buah dataset FER yaitu dataset CK+ (Extended Cohn-Kanade) dan KDEF (The Karolinska Directed Emotional Faces). Tahapan pre-processing yang dilakukan adalah mengubah tingkat kekontrasan citra dataset menggunakan metode CLAHE (Contrast Limited Adaptive Histogram Equalization). Hasil pengujian menunjukkan bahwa metode yang menggunaan prosedur CLAHE serta model fine-tuning AlexNet miliki kinerja yang lebih baik dari pada model AlexNet standard. Penggunaan metode ini pada dataset CK+ meningkatkan akurasi rata-rata sebesar 19,01% dan ketika metode ini digunakan pada dataset KDEF mampu meningkatkan akurasi rata-rata sebesar 14,82% dibandingkan pada saat menggunakan model konvensional AlexNet serta tidak melakukan prosedur CLAHE pada citra dataset. Dari hasil pengujian juga diketahui prosedur CLAHE dan fine-tuning AlexNet mampu melakukan klasifikasi ekspresi wajah secara akurat pada citra yang diuji. Sedangkan model konvensional AlexNet dalam beberapa percobaan gagal mengklasifikasikan ekspresi wajah secara tepat pada citra yang diuji.
......The development of digital image processing technology is progressing rapidly along with the many uses of this technology in various fields of human life. Fields of human life that utilize digital image processing technology include robotics, human-computer interaction, healthcare, security and safety, and transportation. One application of digital image processing technology is facial expression recognition (FER). The human face can display a variety of different expressions such as expressions of happiness, sadness, anger, fear, surprise, disgust, and so on. There is a challenge for the computer to recognize the difference in facial expressions. One of the technologies used in facial expression recognition applications in digital images is artificial intelligence technology especially CNN (Convolutional Neural Networks). In this study, AlexNet, a CNN model was fine-tuned and combined with CLAHE (Contrast Limited Adaptive Histogram Equalization) procedure toward images dataset for facial expression recognition applications. Fine-Tuning AlexNet model were made by changing some of AlexNet's standard parameters. These parameters include: input initialization (from local normalization to batch normalization), activation function (from ReLU to Leaky ReLU), and dropout value changed from 50%; 50% to 30% and 20%. The facial expression recognition program created was then implemented in two FER (Facial Expression Recognition) datasets, namely CK+ and KDEF. After testing, the results showed that the CLAHE and Fine-Tuning AlexNet model had better performance than the basic AlexNet model. When applying the CK+ dataset that had CLAHE procedure with the Fine-Tuning AlexNet model increases the average of accuracy up to 19,01%, when applying to the KDEF dataset, this method increases accuracy up to 14,82%. From the test results it is known that the CLAHE and the Fine-Tuning AlexNet model model gives better results than the original AlexNet model. Fine-Tuning of the AlexNet model is able to give accurate classification of facial expressions in the tested images. While the original AlexNet model in several experiments failed to accurately clasify facial expressions in the tested images."
Depok: Fakultas Teknik Universitas Indonesia;Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dewi Yanti Liliana
"ABSTRAK
Pengenalan emosi melalui analisis ekspresi wajah merupakan bidang riset kecerdasan buatan yang sedang berkembang serta memiliki banyak tantangan. Hal ini disebabkan karena emosi merupakan komponen penting dalam kehidupan manusia terutama dalam berinteraksi dan berkomunikasi, sehingga perlu dikembangkan sebuah sistem cerdas yang mampu mengenali emosi manusia. Permasalahannya adalah banyaknya variasi ekspresi wajah yang menunjukkan emosi manusia. Selain itu, manusia secara subyektif dapat mengekspresikan suatu emosi yang sama dengan beragam cara dan jenis pergerakan komponen wajah yang berbeda, bahkan ambigu antar jenis emosi. Psikolog mengkategorikan emosi menjadi dua kategori, yaitu emosi dasar dan emosi campuran. Penelitian pengenalan emosi dasar (marah, jijik, takut, senang, sedih, terkejut) telah banyak dilakukan, namun pengenalan emosi campuran merupakan tantangan yang belum banyak dieksplorasi karena kompleksitasnya yang tinggi. Kemunculan emosi campuran berbeda dari emosi dasar, karena emosi campuran merupakan kombinasi dari emosi dasar dalam suatu ekspresi wajah. Untuk mengatasi permasalahan subyektifitas dan ambiguitas ekspresi emosi, diperlukan pendekatan fuzzy dalam menganalisis linguistik komponen wajah untuk menentukan jenis emosi. Dalam penelitian ini, diajukan sebuah framework untuk pengenalan emosi berbasis konsep fuzzy emotion yang merupakan representasi pengetahuan pakar psikolog berbasis sistem fuzzy. Tiga tahap dalam framework pengenalan emosi berbasis konsep fuzzy emotion yaitu: ekstraksi fitur wajah dengan Active Appearance Model (AAM) dan analisis geometrik fitur komponen wajah; pemrosesan fitur tingkat tinggi dengan Fuzzy Facial Component Inference System (FFCIS); dan penentuan nilai emosi fuzzy emotion dengan Fuzzy Emotion Inference System (FEIS). Pengujian performa sistem memberikan hasil pengenalan terbaik pada dataset ekspresi wajah extended Cohn Kanade (CK+) dengan akurasi pengenalan linguistik komponen wajah 0.98, dan akurasi pengenalan emosi 0.90. Pengujian pengenalan emosi juga dilakukan menggunakan dataset Indonesian Mixed Emotion Dataset (IMED) yang menghasilkan akurasi pengenalan 0.87. Framework pengenalan emosi berbasis konsep fuzzy emotion berpotensi untuk diterapkan dalam berbagai permasalahan nyata seperti deteksi rasa sakit, deteksi stress, deteksi kebohongan, dan rekonstruksi animasi.

ABSTRACT
Emotion recognition through facial expression analysis is an emerging research in the area of Artificial Intelligence which is still facing many challenges. Emotions are an important component in human life, especially in an interaction and communication. Therefore, an intelligent system that is able to recognize human emotions needs to be developed. The problem is in the variation of facial expressions that displays human emotions. In addition, humans can subjectively express the same emotions in various ways with different facial component movements, even ambiguous between classes of emotions. Psychologist categorized emotion into two classes, basic emotion and mixed emotion. Basic emotion recognition research (anger, disgust, fear, happy, sadness, surprise) has been done a lot, but mixed emotion recognition is an open challenge that has not been widely explored due to the complexity of the problem. The appearance of mixed emotions is different from basic emotions; mixed emotion is a combination of basic emotions in a facial expression. To overcome the problem of subjectivity and ambiguity of emotion expression, a fuzzy approach is developed to analyze the facial components in determining the type of emotion. In this study, we propose a framework for fuzzy emotion recognition which is a representation of the expert psychologist knowledge based on fuzzy systems. Three stages in the fuzzy emotion recognition: facial feature extraction with Active Appearance Model (AAM) and geometric analysis of facial component features; high level feature processing with Fuzzy Facial Component Inference System (FFCIS); and fuzzy emotion recognition with Fuzzy Emotion Inference System (FEIS). System performance testing provided the best results on extended Cohn Kanade (CK+) facial expression dataset, with the accuracy of linguistic facial component recognition 0.98, and accuracy of fuzzy emotion recognition 0.90. Testing was also done using Indonesian Mixed Emotion Dataset (IMED) dataset which resulted in accuracy of 0.87. The fuzzy emotion recognition has a potential to be applied in various real problems such as pain detection, stress detection, lie detection, and animation reconstruction."
2019
D2638
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muhammad Rifki
"ABSTRACT
Pengenalan ekspresi wajah telah menjadi tantangan dalam ilmu digital selama bertahun-tahun. Dengan pertumbuhan baru-baru ini di dalam bidang machine learning, sistem pengenalan ekspresi wajah secara real-time dengan machine learning dapat berguna untuk sistem monitoring emosi untuk interaksi manusia-komputer (HCI). Model yang penulis ajukan dirancang dengan model Convolutional Neural Network (CNN) dan menggunakannya untuk melatih dan menguji gambar ekspresi wajah dengan TensorFlow. Sistem ini memiliki dua bagian, sebuah recognizer untuk validasi dan model pelatihan data untuk data training. recognizer berisi detektor wajah dan pengenal ekspresi wajah. Detektor wajah mengekstrak gambar wajah dari frame video dan pengenal ekspresi wajah mengklasifikasikan gambar yang diekstrak. Model pelatihan data menggunakan CNN untuk melatih data. Sistem pengenal juga menggunakan CNN untuk memantau keadaan emosi dari pengguna melalui ekspresi wajah mereka. Sistem ini mengklasifikasikan emosi dalam enam kelas universal, marah, jijik, senang, terkejut, sedih dan takut, ditambah dengan emosi netral.

ABSTRACT
The introduction of facial expressions has been a challenge in digital science for many years. With the recent growth in machine learning, a real-time facial recognition recognition system with machine learning can be useful for emotional monitoring systems for human-computer interaction (HCI). The model the author proposes is designed with the Convolutional Neural Network (CNN) model and uses it to train and test facial expression images with TensorFlow. The system has two parts, a recognizer for validation and a data training model for training data. The recognizer contains face detector and facial recognition. The face detector extracts the face image from the video frame and facial expression identifiers classify the extracted image. The data training model uses CNN to train data. The identification system also uses CNN to monitor the emotional state of the user through their facial expressions. This system classifies emotions in six universal classes, anger, disgust, pleasure, shock, sadness and fear, coupled with neutral emotions."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library