Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 52 dokumen yang sesuai dengan query
cover
Tiara Yuniawati
"Pembentukan hidrogen pada proses elektrolisis plasma di sekitar katoda dipengaruhi oleh besarnya energi penguapan. Penggunaan selubung, meminimalkan pendinginan di fasa liquid dan memaksimalkan pendinginan di fasa gas menjadi parameter penting guna meningkatkan efisiensi proses produksi hidrogen. Memaksimalkan pendinginan pada fasa gas akan mengoptimalkan terbentuknya plasma pada katoda sehingga dapat menekan konsumsi energi hingga 50%. Energi yang digunakan akan lebih banyak untuk konversi dibandingkan evaporasi. Penggunaan selubung digunakan untuk melokalisasi panas yang dihasilkan oleh katoda dalam pembentukan plasma. Untuk itu, diperlukan modifikasi reaktor untuk meningkatkan efisiensi proses produksi hidrogen agar dapat menekan jumlah energi yang digunakan dan meningkatkan jumlah produk gas hidrogen. Pada karakterisasi arus dan tegangan, semakin tinggi konsentrasi larutan maka tegangan yang dibutuhkan untuk membentuk plasma akan semakin rendah. Semakin bertambahnya konsentrasi dan tegangan, maka laju produksi, komposisi, dan G (H2) juga meningkat dan dapat menekan konsumsi energi (Wr). Kondisi optimum yang diperoleh dari variasi penggunaan selubung adalah dengan menggunakan panjang selubung 5 cm pada kedalaman katoda 1 cm dibawah permukaan larutan. Untuk mencapai efisiensi proses produksi hidrogen, dapat dilakukan dengan penambahan aditif metanol. Hasil terbaik dari berbagai variasi yang dilakukan, dicapai saat menggunakan aditif metanol 15% volume pada 0,01 M NaOH dengan rasio gas hidrogen tertinggi hasil proses elektrolisis plasma dibandingkan Faraday dengan nilai G (H2) sebesar 151,88 mol/mol, konsumsi energi terendah yaitu 0,89 kJ/mmol, laju produksi hidrogen tertinggi yaitu 31,45 mmol/menit, dan komposisi hidrogen terbesar yaitu 78,6%.

Hydrogen generation of plasma electrolysis process around the cathode is affected by the amount of evaporation energy. Utilization of veil, minimizing cooling in liquid phase, and maximizing cooling in gas phase become important parameters to improve process efficiency of hydrogen production. Maximizing cooling on gas phase can optimize the plasma formed around the cathode that will decrease energy consumption until 50%. Conversion takes more energy than evaporation process. The utilization of veil is used to localize the heat produced by cathode of plasma generation. Therefore, an improvement of electrolysis plasma reactor modification is needed to improve process efficiency of hydrogen production, suppress the amount of energy consumption and improve the amount of hydrogen production. On the characterization of current and voltage, as the concentration gets higher, the voltage needed to form the plasma will be lower. As the concentration and voltage get increasing; the rate of production, composition, and G (H2) also gets increasing while the energy consumption (Wr) is reduced. The optimum conditions obtained from variations of veil is 5 cm of length, when the depth of cathode is 1 cm below the surface of solution. Achieving efficiency process of hydrogen production can be done by adding methanol. The best result is achieved using 15% volumes of methanol additive in 0.01 M NaOH with the highest hydrogen ratio plasma electrolysis process results compared with the Faraday electrolysis, G (H2) is 151,88 mol/mol, the lowest energy consumption is 0,89 kJ/mmol, the highest hydrogen production rate is 31,45 mmol/minute and the highest hydrogen composition is 78,6%."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64978
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nelson Saksono
Jakarta: UI-Press, 2016
PGB 0328
UI - Pidato  Universitas Indonesia Library
cover
Victor R. CH. Pinontoan
"ABSTRAK
Metode elektrolisis plasma adalah proses elektrolisis dengan menaikkan tegangan elektroda hingga terbentuk bunga api listrik (plasma) dalam larutan. Plasma menyebabkan disosiasi homolitik molekul air menjadi gas hidrogen (H2) dan oksigen (O2). Produktivitas H2 dan O2 yang dihasilkan melalui proses elektrolisis plasma jauh lebih besar dibanding proses elektrolisis konvensional. Generator hidrogen-oksigen (GHO) dengan metode elektrolisis plasma sangat tepat diterapkan pada motor bakar bensin, karena penambahan H2 dan O2 dapat meningkatkan efektivitas proses pembakaran bensin secara signifikan. Penelitian ini menggunakan kondisi terbaik dari laju alir hidrogen oksigen yang akan diinjeksike motor bakar. Hasil penelitian awal pengusul telah berhasil mendapatkan produksi > 1 L/menit dengan konsumsi energi < 750 W, sehingga alat ini layak diaplikasikan pada genset dengan daya 2500 watt dan berbahan bakar bensin.

ABSTRACT
Plasma electrolysis method is a process of electrolysis to raise the voltage electrode to form an electric spark (plasma) in solution. Plasma homolitic cause dissociation of water molecules into hydrogen gas (H2) and oxygen (O2). Productivity H2 and O2 produced by plasma electrolysis process is much larger than the conventional electrolysis process. Hydrogen-oxygen generator (GHO) by plasma electrolysis method is appropriately applied to the motor gasoline, because the addition of H2 and O2 can increase the effectiveness of gasoline combustion process significantly. This study use the best flow rate of hydrogen and oxygen to be injected into motor fuel. The preliminary results were proponents have managed to get production of > 1 L / minute with energy consumption <750 W, so that the tool is appropriate applied the 2500 watt generator with power and gasoline."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43751
UI - Skripsi Open  Universitas Indonesia Library
cover
Aldela Verlinika Devani
"Limbah fenol merupakan limbah berbahaya dan sulit terdegradasi yang ditemukan di berbagai industri, seperti petrokimia, tekstil, dan lainnya. Pada penelitian ini, limbah fenol akan didegradasi menggunakan metode elektrolisis plasma injeksi udara dengan katoda sebagai injektor. Penelitian ini bertujuan untuk mengkaji pengaruh laju alir udara dan tegangan untuk mendapatkan kondisi optimum elektrolisis plasma. Selain itu, dilakukan penambahan zat warna Remazol Red dalam larutan fenol untuk mengetahui kinerja elektrolisis plasma dalam mendegradasi limbah campuran. Parameter efektivitas proses degradasi limbah fenol akan ditinjau berdasarkan energi pembentukan plasma, persentase degradasi limbah fenol, dan erosi anoda. Penelitian dilakukan dengan reaktor 1,2 L menggunakan variasi laju injeksi udara 0 L/min; 0,2 L/min; 0,3 L/min, dan 0,4 L/min serta variasi tegangan 550 V, 600 V, dan 650 V dengan larutan elektrolit K2SO4 0,02 M. Berdasarkan penelitian, diketahui bahwa penambahan zat pewarna Remazol Red tidak menurunkan persentase degradasi limbah fenol. Penambahan laju alir injeksi udara hingga titik optimum (0,3 L/min) dapat meningkatkan persentase degradasi limbah fenol. Tegangan optimum pada penelitian ini adalah 550 V. Tegangan lebih tinggi akan meningkatkan persentase degradasi limbah fenol dan erosi anoda. Hasil degradasi fenol pada kondisi optimum mencapai 99,88% dengan erosi anoda 0,02 g dan penurunan kadar COD mencapai 80,38% pada konsentrasi awal limbah fenol 100 ppm dan FeSO4 20 ppm. Produksi senyawa samping yang didapat berupa nitrat sebesar 5,958 mmol dan amonia sebesar 0,529 mmol. 

Phenol waste is a dangerous and difficult to degrade waste that is found in various industries, such as petrochemical, textile, and others. In this research, phenol waste will be degraded using the air injection plasma electrolysis method with the cathode as the injector. This research aims to examine the influence of air flow rate and voltage to obtain optimum conditions for plasma electrolysis. In addition, Remazol Red dye was added to the phenol solution to determine the performance of plasma electrolysis in degrading mixed waste. The effectiveness parameters of the phenol waste degradation process will be reviewed based on plasma formation energy, percentage of phenol waste degradation, and anode erosion. The research was carried out with a 1,2 L reactor using varying air injection rates of 0 L/min; 0,2 L/min; 0,3 L/min, and 0,4 L/min and voltage variations of 550 V, 600 V, and 650 V with 0,02 M K2SO4 electrolyte solution. Based on research, it is known that the addition of Remazol Red dye does not reduce the percentage of waste degradation phenol. Increasing the air injection flow rate to the optimum point (0,3 L/min) can increase the percentage of phenol waste degradation. The optimum voltage in this study was 550 V. A higher voltage will increase the percentage of phenol waste degradation, but will increase anode erosion. The results of phenol degradation under optimum conditions reached 99,88% with anode erosion of 0.02 g and the reduction in COD levels reached 80,38% at an initial phenol waste concentration of 100 ppm and FeSO4 20 ppm. The side compound production obtained was nitrate of 5,958 mmol and ammonia of 0,529 mmol."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Trivika Lemona
"[ABSTRAK
Hidrogen merupakan salah satu unsur yang dapat dijadikan sebagai bahan bakar alternatif karena BBH atau bahan bakar hidrogen bersifat ecoenergi dengan proses pembakaran yang hanya menghasilkan air dan energi (listrik dan panas). Salah satu teknologi penghasil hidrogen adalah dengan metode Contact Glow Discharge Elektrolisis atau CGDE. Penelitian ini menggunakan metode CGDE dengan multi katoda dan penambahan etanol dengan tujuan dapat meningkatkan laju produksi hidrogen dan efektivitas proses.pada penelitian ini akan dilihat pengaruh penambahan jumlah katoda, pengaruh konsentrasi etanol dan diameter katoda terhadap laju produksi dan efektivitas hidrogen. Dari karakterisasi arus dan tegangan yang diperoleh pada penelitian ini, dapat disimpulkan bahwa arus akan semakin meningkat seiring dengan bertambahnya jumlah katoda. Penggunaan multi katoda pada proses CGDE juga terbukti meningkatkan produksi hidrogen pada tegangan dan konsumsi energi yang sama. Penambahan zat aditif etanol juga dilakukan pada penelitian ini dan memperoleh hasil bahwa semakin tinggi konsentrasi etanol maka akan semakin tinggi produksi dan efektivitas gas Hidrogen yang dihasilkan. Selain itu, penelitian ini juga membuktikan bahwa semakin besar diameter katoda maka laju produksi akan semakin tinggi, namun konsumsi energi menjadi meningkat dan tidak sebanding dengan peningkatan laju produksi sehingga menghasilkan efektivitas yang semakin kecil. Proses CGDE multi katoda pada penelitian ini menunjukkan peningkatan efektivitas proses sebesar 76 kali lipat dibandingkan dengan elektrolisis Faraday.

ABSTRACT
Hydrogen is one of elements that can be used as an alternative energy. The combustion of Hydrogen only produces water and energy. Therefore, hydrogen is called as ecoenergy. One of technology that can produce hydrogen is Contact Glow Discharge Electrolysis or CGDE. CGDE is one of plasma electrolysis that uses electrolyte solution and inert electrode to produce hydrogen in high voltage. This research uses CGDE method with multi-cathode and ethanol in order to increase hydrogen production and the effectivity of process. In this research, we will explore the effect of increasing cathode number, etanol addition, and increasing of cathode diameter. From characterization of current and volatge, we can conclude that the increasing of cathode number can increase the current that through into cathode. Utilization of multi-cathode in CGDE is proven that can increase the hydrogen production at the same voltage and energy consumption. The addition of ethanol has done in this research and we can conclude that when we increase the concentration of ethanol, the hydrogen production will be increased either at the same voltage. In addition, this research also prove that the bigger diameter of a cathode will increase the production rate, but the energy consumption increases higher than the production rate. Therefore, the increasing of diameter of cathode is not effective to use in CGDE. The CGDE multi-cathode on this research indicated increasing of effectiveness as much as 76 times higher than the Faraday Electrolysis., Hydrogen is one of elements that can be used as an alternative energy. The combustion of Hydrogen only produces water and energy. Therefore, hydrogen is called as ecoenergy. One of technology that can produce hydrogen is Contact Glow Discharge Electrolysis or CGDE. CGDE is one of plasma electrolysis that uses electrolyte solution and inert electrode to produce hydrogen in high voltage. This research uses CGDE method with multi-cathode and ethanol in order to increase hydrogen production and the effectivity of process. In this research, we will explore the effect of increasing cathode number, etanol addition, and increasing of cathode diameter. From characterization of current and volatge, we can conclude that the increasing of cathode number can increase the current that through into cathode. Utilization of multi-cathode in CGDE is proven that can increase the hydrogen production at the same voltage and energy consumption. The addition of ethanol has done in this research and we can conclude that when we increase the concentration of ethanol, the hydrogen production will be increased either at the same voltage. In addition, this research also prove that the bigger diameter of a cathode will increase the production rate, but the energy consumption increases higher than the production rate. Therefore, the increasing of diameter of cathode is not effective to use in CGDE. The CGDE multi-cathode on this research indicated increasing of effectiveness as much as 76 times higher than the Faraday Electrolysis.]"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58845
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hana Julia
"ABSTRAK
Asam klorida dapat dimanfaatkan sebagai larutan yang dapat menghasilkan hidrogen dan klor. Sektor industri yang menghasilkan gas klor adalah industri klor-alkali sedangkan industri menghasilkan gas hidrogen adalah steam reforming dan elektrolisis air. Industri klor dan hidrogen mengonsumsi energi dalam jumlah tinggi. Metode elektrolisis plasma dengan asam klorida dapat meningkatkan produksi gas klor dan hidrogen dengan konsumsi energi yang lebih sedikit. Adanya perbedaan tegangan yang sangat tinggi akan menghasilkan spesi radikal pada kedua elektroda. Tegangan, konsentrasi dan kedalaman sangat mempengaruhi produksi gas yang dihasilkan. Selain itu penambahan gas oksigen dapat meningkatkan produksi gas hidrogen 17 kali, sedangkan untuk gas klor dapat meningkat 6 kali lebih banyak dibandingkan elektrolisis Faraday. Sedangkan tanpa injeksi gelembung udara produksi gas hidrogen meningkat 5 kali sedangkan untuk gas klor tidak dapat terdeteksi. Fenomena pembentukan plasma secara simultan dapat dilakukan dengan kondisi kedalaman elektroda dibuat sama dan minimum. Produksi gas yang dihasilkan pada keadaan simultan tidak lebih banyak dibandingkan gas yang dihasilkan secara parsial pada jumlah energi yang sama.

ABSTRACT
Hydrochloric acid can be used as a solution that can produce hydrogen and chlorine. The industrial sector that produces chlorine gas is the chlor-alkali industry, while industry generates hydrogen gas is the steam reforming and electrolysis of water. Industrial chlorine and hydrogen consumed energy in high amounts. Plasma electrolysis with hydrochloric acid can increase the production hydrogen and chlor with less energy consumption. The existence of a very high voltage difference will generate radical species at both electrodes. Applied voltage, concentration of electrolye and depth of anode have important influences on the amount of gas resulted. Addition of oxygen can increase hydrogen gas 17 times much more, and can increase chlor 6 times much more than Faraday electrolysis. While without oxygen, hydrogen gas only 5 times much more, and chlor could not detected. Phenomenon of plasma simultaneously could occur if the depth of anode and cathode alike and minimum. In the equal energy total, the amount of gas in simultan method less than the amount of gas in partial methode.
"
2016
S63390
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dita Amelia Putri
"Penelitian ini bertujuan untuk mendegradasi Remazol Red dalam limbah pewarna batik dengan menggunakan metode elektrolisis plasma. Elektrolisis Plasma merupakan salah satu metode yang terbukti mampu dalam mendegradasi limbah organik karena sangat produktif dalam menghasilkan radikal hidroksil. Pengukuran konsentrasi hidrogen peroksida yang merupakan indikator keberadaan radikal hidroksil juga dilakukan pada beberapa variabel penting yaitu tegangan dan konsentrasi elektrolit. Spektrum serapan ultraviolet-sinar tampak (UV-Vis) digunakan untuk memantau proses degradasi. Hasil penelitian menunjukkan degradasi Remazol Red mencapai 99,97% yang dicapai dengan larutan elektrolit NaCl 0,02 M dengan penambahan Fe2+ sebanyak 20 ppm, tegangan 700 V dan kedalaman anoda 0,5 cm dengan suhu dijaga pada 60-70°C.

This study aims to degrade Remazol Red in Batik dye waste water by using CGDE method. Contact Glow Discharge Electrolysis (CGDE) is a method which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. Measurement of hydrogen peroxide concentration as an indicator of the presence of hydroxyl radical also performed in various influencing factors such as applied voltage and electrolyte concentration. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm and the temperature of solutions was maintained at 60-70°C."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65361
UI - Skripsi Membership  Universitas Indonesia Library
cover
Edward Gustaf
"Metode elektrolisis plasma mampu menginduksi reaksi penggabungan lateks dan starch dengan radikal hidroksil bull;OH yang bertindak sebagai inisiator. Dengan metode elektrolisis plasma, reaksi dapat berlangsung dan perbedaan kepolaran pada reaktan dapat diatasi sehingga kedua material reaktan menjadi cocok compatible dan peningkatan sifat mekanik diharapkan dapat diperoleh. Lateks hibrida yang terbentuk bertindak sebagai material tambahan dalam pembuatan ban karena bersifat akustik, dapat menyerap suara. Karakteriasi lateks hibrida menggunakan FTIR dan pemurniannya dengan proses solvasi menggunakan kloroform. Sintesis dikatakan berhasil secara kualitatif ketika hasil karakterisasi menggunakan FTIR muncul gelombang ikatan eter antara lateks dan starch. Proses sintesis diteliti secara lebih spesifik dengan melihat pengaruh dari konsentrasi elektrolit Na2SO4 yang digunakan dengan variasi sebesar, 0,02; 0,03; 0,04 M, pengaruh posisi terbentuknya plasma katodik atau anodik, dan pengaruh produksi radikal hidroksil bull;OH yang direproduksi oleh katalis FeSO4 berkonsentrasi 20, 30, 40 ppm terhadap perolehan lateks hibrida menggunakan metode elektrolisis plasma. Konsentrasi lateks yang digunakan pada reaksi sebesar 1 -wt yang diperoleh dengan mengencerkan lateks 55 -wt sekitar 9,1 mL menggunakan akuades hingga volume 500 mL, starch yang digunakan sebesar 3 dari massa lateks bervolume 9,1 mL. Tegangan operasi proses dengan plasma anodik dan katodik masing-masing sebesar 567,5 Volt dan 340,5 Volt selama 10 menit. Dari variabel diatas, diperoleh yield per kJ konsumsi energi listrik lateks hibrida dengan menggunakan plasma anodik dan katodik dengan penambahan elektrolit dan tanpa penambahan katalis berturut-turut sebesar 0,04; 0,02; 0,01 dan 0,18; 0,13; 0,12. Sedangkan, yield lateks hibrida dengan menggunakan plasma katodik dengan penambahan elektrolit dan penambahan katalis sebesar 5,75; 14,26; 21,82.

The plasma electrolysis method induces a latex and starch compounding reaction with a hydroxyl radical bull OH as the initiator. By the method of plasma electrolysis, the reaction can take place and the difference of polarity on the reactants can be overcome so that both reactant materials become compatible and an increase in mechanical properties can be obtained. The hybrid latex formed acts as an additional material in tire manufacturing. Latex hybridization using FTIR and purification by solvation process using chloroform. Synthesis is said to work qualitatively when the characterization results using FTIR arises ether bond waves between the latex and starch. The synthesis process was investigated more specifically by looking at the effect of the Na2SO4 electrolyte concentration used with variations of 0.02 0.03 0.04 M, the influence of plasma formation cathodic or anodic, and the effect of production of hydroxyl radicals bull OH reproduced by FeSO4 catalysts concentrating 20, 30, 40 ppm on the acquisition of hybrid latex using plasma electrolysis method. The latex concentration used in the reaction of 1 wt obtained by diluting the latex 55 wt about 9.1 mL using aquadest to 500 mL volume, starch used at 3 of the 9.1 mL latex mass. The operating voltage of the process with anodic and cathodic plasma respectively was 567.5 Volt and 340.5 Volt for 10 min. From the above variables, we obtain yield per kJ of hybrid latex electric energy consumption using anodic and cathodic plasma with electrolyte addition and without catalyst addition of 0.04 0.02 0.01 0.18 0.13 0.12. Meanwhile, the percent yield of latex hybrids using cathodic plasma with electrolyte addition and catalyst addition was 5.75 14.26 21.82.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diva Rizka Zahrani Maulana
"Tanaman dapat menyerap nitrogen secara efisien jika berbentuk nitrogen terfiksasi, seperti nitrat dan ammonia dalam pupuk. Air Plasma Electrolysis dapat dimanfaatkan dalam produksi pupuk nitrat cair dengan menggunakan bahan baku udara yang diinjeksikan melalui katoda menuju zona plasma. Penelitian ini bertujuan untuk memperoleh produk pupuk nitrat cair yang optimum dari prototipe alat produksi pupuk nitrat cair dengan injeksi udara di katoda dan mendapatkan kondisi operasinya. Penelitian ini dilakukan dalam reaktor batch, dengan variasi daya (400, 500, 600 Watt), laju alir udara (0; 0,4; 0,6; 0,8; 1; 1,2 lpm), jarak antara anoda (zona plasma) dengan injektor katoda (1 cm, 2 cm, 3 cm), variasi komposisi konsentrasi elektrolit (0,01 M K2HPO4/0,006 M K2SO4; 0,011 M K2HPO4/0,007 M K2SO4; 0,018 M K2HPO4/0,007 M K2SO4; 0,011 M K2HPO4/0,008 M K2SO4; dan 0,018 M K2HPO4/0,008 M K2SO4), suhu operasi (25 oC – 50 oC dan 50 oC), dan penambahan aditif Fe2+ (10 ppm, 20 ppm, 30 ppm). Produksi nitrat optimum sebesar 1727,2 ppm dengan energi spesifik sebesar 5,82 kJ/mmol, ketergerusan anoda sebesar 0,06 g, dalam waktu operasi 90 menit, pada daya 600 watt, laju alir udara 0,8 lpm, jarak antara anoda (zona plasma) dan injektor udara katoda sebesar 2 cm, menggunakan larutan elektrolit 0,007 M K₂SO₄ dan 0,011 M KH₂PO₄, dengan penambahan aditif ion Fe²⁺ sebesar 30 ppm, dan penggunaan elektroda Stainless Steel-316 (SS-316).

Plants can efficiently absorb nitrogen when it is in a fixed form, such as nitrate and ammonia in fertilizers. Air Plasma Electrolysis can be utilized in the production of liquid nitrate fertilizer using air injected through the cathode into the plasma zone. This study aims to obtain an optimum liquid nitrate fertilizer product from a prototype nitrate fertilizer production device with air injection at the cathode and to determine its operating conditions. The research is conducted in a batch reactor, with variations in power (400, 500, 600 watts), air flow rate (0; 0.4; 0.6; 0.8; 1; 1.2 lpm), distance between the anode (plasma zone) and cathode injector (1 cm, 2 cm, 3 cm), electrolyte composition (0.01 M K2HPO4/0.006 M K2SO4; 0.011 M K2HPO4/0.007 M K2SO4; 0.018 M K2HPO4/0.007 M K2SO4; 0.011 M K2HPO4/0.008 M K2SO4; and 0.018 M K2HPO4/0.008 M K2SO4), operating temperature (25°C – 50°C and 50°C), and the addition of Fe²⁺ additive (10 ppm, 20 ppm, 30 ppm). The optimum nitrate production is 1727.2 ppm with a specific energy of 5.82 kJ/mmol, anode erosion of 0.06 g, within an operating time of 90 minutes, at a power of 600 watts, air flow rate of 0.8 lpm, a distance between the anode (plasma zone) and cathode air injector of 2 cm, using an electrolyte solution of 0.007 M K₂SO₄ and 0.011 M KH₂PO₄, with the addition of Fe²⁺ ion additive at 30 ppm, and using Stainless Steel-316 (SS-316) electrodes."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6   >>