Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Zulkifli Abdul Majid
"Bioethanol is a renewable and oxygenated bio-based resource with the potential to reduce particulate emissions in direct fuel injection diesel engines. This study aims to further diminish the outflow of a Diesel Fuel Engine motor fueled by diesel-bioethanol by identifying the most suitable blend by applying various blends of diesel-bioethanol, namely E10, E20, E50, and E80 blends. The Diesel engine had been tested using solely diesel fuel and then with bioethanol blends for comparison purposes. The results show that bioethanol fuel can provide a lower torque for the Diesel engine, but a similar engine performance occurs in terms of Horse Power. However, the presence of bioethanol inside the blended fuels increases the emissions of Unburned Hydrocarbon, (HC), CO, CO2, and NOx compared to engines that use only Pure Diesel. E10 has been found as the most ideal blend from all the fuels tested. Further research is required to distinguish the E80 fuel blend, as it is unable to be tested on a 6-cylinder engine, since the standard running Diesel engine suitable for the the standard running Diesel engine suitable for the E80 blend fuel is a single cylinder."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Jervis Sinto
"ABSTRACT
Pencemaran udara akibat emisi gas buang kendaraan bermotor dalam bentuk gas-gas berbahaya seperti karbon monoksida CO dan hidrokarbon HC menjadi masalah bagi kesehatan makhluk hidup di lingkungan sekitarnya. Gas-gas tersebut dapat dijerap dengan karbon aktif yang terbuat dari limbah pertanian seperti kulit pisang karena memiliki kandungan lignoselulosa cukup tinggi dan jumlah yang banyak di Indonesia yaitu sekitar 400-700 ribu ton per tahunnya. Karbon aktif dari kulit pisang dalam penelitian ini dibuat melalui tahap dehidrasi, karbonisasi pada suhu 350 C selama 1 jam, kemudian aktivasi secara kimia menggunakan berbagai konsentrasi larutan H2SO4 selama 1 jam pada suhu 85oC. Sebagai pembanding kemampuan adsorpsi, sebagian karbon aktif saat proses karbonisasi juga diaktivasi secara fisika menggunakan gas N2 dengan laju alir 0,15 NL/menit. Karakterisasi karbon aktif dilakukan dengan uji bilangan iodin, SEM, dan EDX. Melalui uji bilangan iodin, luas permukaan karbon aktif terbaik didapat pada karbon yang teraktivasi fisika-kimia menggunakan H2SO4 6 N, yaitu sebesar 614 m2/g. Sementara luas permukaan karbon aktif pada karbon teraktivasi kimia pada konsentrasi H2SO4 yang sama yaitu sebesar 426 m2/g. Karbon-karbon aktif dengan karakteristik terbaik dari masing-masing metode aktivasi diuji kemampuan adsorpsinya untuk menurunkan kadar emisi gas buang CO dan HC pada sepeda motor. Karbon aktif teraktivasi kimia H2SO4 6 N rata-rata mampu mengadsorpsi emisi gas buang CO dan HC secara berturut-turut sebesar 40,46 dan 31,51. Sementara karbon aktif teraktivasi fisika-kimia H2SO4 6 N rata-rata mampu mengadsorpsi emisi gas buang CO dan HC secara berturut-turut sebesar 56,27 dan 42,63.

ABSTRACT
Air pollution caused by motor vehicle exhaust emissions in the form of harmful gases such as carbon monoxide CO and hydrocarbon HC becomes a problem for the health of living things in the surrounding environment. Those gases can be adsorbed with activated carbon made from agricultural waste such as banana peel because it has quite high lignocellulose content and large amount in Indonesia, which is about 400 700 thousand tons per year. Activated carbon from banana peel in this research is made through the dehydration stage, carbonization at 350oC for 1 hour, then chemical activation using various concentrations of H2SO4 solution for 1 hour at 85oC. In comparison with the adsorption capacity, some of the activated carbon at carbonization process also proceed with physical activation using N2 gas with a flow rate of 0.15 NL min. Characterization of activated carbon is done by iodine, SEM, and EDX tests. Through iodine test, the best surface area of activated carbon is obtained in physical chemical activated carbon with H2SO4 6 N, which is 614 m2 g. Meanwhile, surface area of chemical activated carbon in same H2SO4 concentration is 426 m2 g. The activated carbons with best characteristic from each activation method are tested its adsorption ability to decrease exhaust CO and HC emission content in motorcycle. Chemical activated carbon with H2SO4 6 N is capable of adsorbing CO and HC emissions 40.46 and 31.51 respectively. While physical chemical activated carbon with H2SO4 6 N is capable of adsorbing CO and HC emissions 56.27 and 42.63 respectively."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zulkifli Abdul Majid
"Bioethanol is a renewable and oxygenated bio-based resource with the potential to reduce particulate emissions in direct fuel injection diesel engines. This study aims to further diminish the outflow of a Diesel Fuel Engine motor fueled by diesel-bioethanol by identifying the most suitable blend by applying various blends of diesel-bioethanol, namely E10, E20, E50, and E80 blends. The Diesel engine had been tested using solely diesel fuel and then with bioethanol blends for comparison purposes. The results show that bioethanol fuel can provide a lower torque for the Diesel engine, but a similar engine performance occurs in terms of Horse Power. However, the presence of bioethanol inside the blended fuels increases the emissions of Unburned Hydrocarbon, (HC), CO, CO2, and NOx compared to engines that use only Pure Diesel. E10 has been found as the most ideal blend from all the fuels tested. Further research is required to distinguish the E80 fuel blend, as it is unable to be tested on a 6-cylinder engine, since the standard running Diesel engine suitable for the E80 blend fuel is a single cylinder."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:6 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Hariyadi
"Keterbatasan bahan bakar minyak bumi memaksa manusia untuk mencari sumber energi alternatif. Dan yang paling memungkinkan untuk Indonesia adalah energi terbarukan seperti bioethanol yang dapat diperoleh dari tebu, gandum, umbi dan jagung. Tanaman tersebut dapat tumbuh subur karena iklim tropis Indonesia, namun masih rendahnya teknologi dan belum diproduksinya secara masal membuat produk bioethanol terkesan mahal. Oleh karenanya diperlukan teknologi sederhana yang dapat memproduksi ethanol berkadar rendah (low grade ethanol) menjadi tinggi, yaitu dengan destilasi.
Dalam penelitian ini memanfaatkan hasil destilasi (distillate) alkohol berkadar rendah sebagai bahan bakar tambahan pada motor Honda Revo 100 cc berbahan bakar bensin. Pencampuran bioethanol dengan bensin dilakukan langsung pada saat pengkabutan di ruang venturi karburator melalui lubang main jet dan pilot jet. Variasi kadar bioethanol 80%, 85%, 90% dan 95% digunakan untuk mengukur prestasinya untuk dibandingkan power, emisi gas buang dan dianalisa pengaruh yang terjadi.

The limited oil resource forces humans to seek for alternative energy sources. The most possible alternative for Indonesia is through renewable energy like bioethanol energy from sugar canes, wheats, roots, and corns. Those plants are fertile to be grown in Indonesian tropical climate, however the low technology and absence of massal production make the high cost for bioethanol production. Therefore, it needs simple technology for producing the low grade ethanol into the high grade, such as by distillation.
This research uses the distillate of low grade alcohol as additional fuel on Honda Revo motorcycle 100 cc. Fuel mixing bioethanol and gasoline can be made immediately when sprayer in ventury chamber of carburator through main jet and pilot jet orifice. Distillate content of bioethanol 80%, 85%, 90% and 95% will be used to measure the performance then compared power, exhaust emission and analyzed on the occuring affects.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42048
UI - Skripsi Open  Universitas Indonesia Library
cover
Dzaky Aufar Perwira
"Bensin menjadi salah satu energi yang umum digunakan karena penggunaannya yang luas seperti bahan bakar pada kendaraan bermotor. Seiring dengan peningkatan jumlah kendaraan bermotor, dampak polusi akibat gas buang kendaraan kini menjadi penyebab utama pencemaran udara. Berbagai macam aditif bahan bakar telah menjadi fokus dalam penelitian, graphene oxide (GO) menjadi salah satu opsi sebagai aditif pada bahan bakar tersebut. Penelitian ini menginvestigasi potensi GO sebagai aditif pada bensin untuk mengurangi emisi gas buang. Melalui percobaan yang dilakukan, penelitian ini mengevaluasi pengaruh konsentrasi GO (50 ppm dan 100 ppm) terhadap emisi CO, CO2, dan HC. Hasil menunjukkan bahwa penambahan GO pada bensin memberikan pengaruh signifikan terhadap emisi gas buang. Pada penambahan 50 ppm dan 100 ppm GO, terjadi penurunan emisi karbon monoksida (CO) dengan rata-rata penurunan sebesar 87.37% untuk 50 ppm GO dan 84.43% untuk 100 ppm GO. Selain itu, emisi karbon dioksida (CO2) meningkat, mengindikasikan pembakaran yang lebih sempurna dengan rata-rata kenaikan sebesar 6.37% untuk 50 ppm GO dan 9.03% untuk 100 ppm GO. Emisi hidrokarbon (HC) juga mengalami penurunan rata-rata sebesar 17.19% untuk 50 ppm GO dan 12.83% untuk 100 ppm GO. Secara keseluruhan, penambahan graphene oxide pada bahan bakar bensin meningkatkan efisiensi pembakaran dan menurunkan emisi gas berbahaya.

Gasoline is one of the most commonly used energy sources due to its widespread application, such as fuel in motor vehicles. With the increase in the number of motor vehicles, the impact of pollution from vehicle exhaust gases has now become a major cause of air pollution. Various fuel additives have been the focus of research, with graphene oxide (GO) being one of the options as an additive for fuel. This study investigates the potential of GO as an additive in gasoline to reduce exhaust gas emissions. Through the experiments conducted, this research evaluates the effect of GO concentrations (50 ppm and 100 ppm) on CO, CO2, and HC emissions. The results show that adding GO to gasoline has a significant impact on exhaust gas emissions. With the addition of 50 ppm and 100 ppm GO, there was a reduction in carbon monoxide (CO) emissions, with an average decrease of 87.37% for 50 ppm GO and 84.43% for 100 ppm GO. Moreover, carbon dioxide (CO2) emissions increased, indicating more complete combustion, with an average increase of 6.37% for 50 ppm GO and 9.03% for 100 ppm GO. Hydrocarbon (HC) emissions also decreased, with an average reduction of 17.19% for 50 ppm GO and 12.83% for 100 ppm GO. Overall, the addition of graphene oxide to gasoline improves combustion efficiency and reduces harmful gas emissions."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library