Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Fathia Amira Nuramalia
"Twitter adalah platform media sosial microblogging yang memungkinkan komunikasi dua arah untuk mengutarakan opini dan komentar. Komentar-komentar yang beragam ini dapat memperlihatkan sentimen-sentimen masyarakat apabila dilakukan analisis sentimen. Analisis sentimen adalah studi yang menganalisis opini orang terhadap suatu produk, organisasi, individu, atau jasa tertentu. Machine learning merupakan metode yang dapat mempermudah proses klasifikasi sentimen. Penelitian ini dilakukan pada cuitan berbahasa Indonesia terkait Kampus Merdeka yang diambil dari Twitter menggunakan package tweepy sebanyak 1.651 cuitan terhitung dari tanggal 5 Maret 2022 hingga 13 Maret 2022. Model machine learning yang digunakan pada penelitian ini adalah Bidirectional Long Short-Term Memory (BiLSTM), dengan dua model hybrid LSTM-based, yaitu CNN-LSTM dan LSTM-CNN sebagai pembanding. Kinerja model diukur dengan metrik kinerja accuracy, precision, recall, dan F1-score. Implementasi dilakukan pada data yang telah dilakukan oversampling untuk mendapatkan hasil yang optimal. Penelitian menunjukkan bahwa model BiLSTM memiliki kinerja yang lebih unggul dibandingkan dengan dua model pembanding lainnya pada seluruh metrik dengan besar metrik, yaitu: accuracy dan recall sebesar 79,577%; precision sebesar 73,097%; dan F1-score sebesar 75,634%.

Twitter is a microblogging social media platform that allows two-way communication to express opinion and comments. These various comments can show us sentiment of the public when we perform a sentiment analysis. Sentiment analysis is a study that analyze the opinion of people towards a specific product, organization, individual, or service. Machine learning is a method that will help perform sentiment classification easier. This study performs analysis on 1.651 data tweets about Kampus Merdeka taken from Twitter using a package called tweepy since March 5th 2022 until March 13th 2022. The machine learning model used in this study is Bidirectional Long Short-Term Memory (BiLSTM), with two LSTM-based hybrid model, CNN-LSTM and LSTM-CNN as comparison models. Model performance is measured by performance metrics accuracy, precision, recall, and F1-score. Implementation was done on data that has been going through oversampling to achieve the best result. The study shows that BiLSTM performs better than the other two comparison models for all the metrics with the percentage of the each metric being: 79.577% for accuracy and recall; 73,097% for precision; and 75,634% for F1-score."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rinda Wahyuni
"Emoji merupakan karakter gambar yang digunakan dalam komunikasi informal khususnya pada media sosial. Emoji digunakan oleh penulis pesan untuk mengekspresikan emosi sebuah pesan. Besarnya penggunaan emoji, membuat emoji sangat berpengaruh terhadap komunikasi dimedia sosial. Emoji digunakan sebagai salah satu fitur untuk analisis sentimen dan ekstraksi emosi dalam penelitian Natural Language Processing dan Information Retrieval, namun masih sedikit penelitian yang fokus menentukan emoji dari sebuah teks. Banyaknya emoji dan kemiripan makna antar emoji membuat klasifikasi emoji menjadi lebih kompleks jika dibandingkan dengan analisis sentimen atau klasifikasi teks pada umumnya. Penelitian ini menggunakan fitur leksikal, fitur semantik, dan fitur linguistik pada permasalahan klasifikasi emoji untuk mengetahui pengaruh setiap fitur pada performa klasifikasi emoji dan mengetahui kombinasi fitur terbaik dalam klasifikasi emoji. Hasil eksperimen menunjukkan fitur semantik memiliki performa terbaik saat digunakan secara individu. Sedangkan fitur leksikal memiliki pengaruh besar terhadap kenaikan performa klasifikasi emoji saat dikombinasikan dengan fitur baseline. Hasil uji statistik paired t-test menunjukkan kombinasi tiga fitur dan kombinasi empat fitur menaikkan akurasi baseline secara signifikan. Kombinasi terbaik didapatkan ketika mengkombinasikan baseline, fitur linguistik, fitur leksikal, dan fitur semantik dengan peningkatan akurasi 12.19 dan f1-score sebesar 12 jika dibandingkan dengan hanya menggunakan fitur baseline.

Emoji is a picture character used in informal communication especially in social media. Emoji used by message writer to express emotion of a text. The massive use of emoji make emoji have a great influence on social media communication. Emoji used as one of the features for sentiment analysis and mood extraction In Natural Language Processing and Information Retrieval Researches, yet there is still researches that focus to predict emoji from a text. Due to diversity of emoji and the similarity meaning between emoji, emoji classification task is more relative complex than common text classification task. This researched used semantic feature, linguistic feature, and lexicon feature used to know the influence of each feature on emoji classification task and the best combinaton feature in emoji classification performan. The experiment showed that semantic feature has the best performance in emoji classification when it used individually. Whereas lexicon feature has the greatest positive influence in baseline feature. The analysis using paired t test showed that combination of two features and three features increase baseline performance significantly. The best combination achieved when combined baseline feature, semantic feature, linguistik feature, and lexicon feature with accuration excalation about 12.19 and f1 score of 12 from baseline."
Lengkap +
Depok: Universitas Indonesia, 2018
T50889
UI - Tesis Membership  Universitas Indonesia Library
cover
Salma Dewi Taufiqoh
"Penelitian ini bertujuan untuk mengembangkan model deteksi penyakit kulit pada hewan peliharaan menggunakan image processing dan Deep Learning. Model ini dirancang untuk mendeteksi tiga jenis penyakit kulit yang umum, yaitu Ringworm, Scabies, dan Earmite, dengan memanfaatkan gambar yang diambil menggunakan kamera ponsel. Model ini menggabungkan teknik image processing, seperti CLAHE, filter Gaussian, dan segmentasi HSV, dengan model CNN. Evaluasi model dilakukan menggunakan metrik Accuracy, Precision, Recall, dan F1-score. Pada penelitian ini digunakan dua model untuk mendeteksi penyakit yang berbeda. Hasil penelitian menunjukkan bahwa untuk model 1, yang melakukan klasifikasi multi-kelas, nilai metrik validasi Akurasi mencapai 83%, F1-score mencapai 82%, Precision mencapai 89%, dan Recall mencapai 83%. Sedangkan untuk hasil model 2, yang melakukan klasifikasi biner, nilai akurasi mencapai 100%, F1-score mencapai 100%, Precision mencapai 100%, dan Recall mencapai 100%. Model ini juga menunjukkan kinerja yang lebih baik dibandingkan dengan model transfer learning ResNet-50 dan VGG16.

This research aims to develop a skin disease detection model for pets using image processing and Deep Learning . The model is designed to detect three common skin diseases, namely Ringworm, Scabies, and Earmite, using images captured by mobile phone cameras. The model combines image processing techniques, such as CLAHE, Gaussian filter, and HSV segmentation, with a CNN model. Model evaluation is performed using the Accuracy, Precision, Recall, and F1-score metrics. In this study, two models were used to detect different diseases. The research results show that for model 1, which performs multi-class classification, the validation metric value of Accuracy reaches 83%, F1-score reaches 82%, Precision reaches 89%, and Recall reaches 83%. Meanwhile, for the results of model 2, which performs binary classification, the accuracy value reaches 100%, F1-score reaches 100%, Precision reaches 100%, and Recall reaches 100%. This model also shows better performance compared to the ResNet-50 and VGG16 transfer learning models."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Razaqa Aulia
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.

The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Lengkap +
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ananda Fadhil Eka Prakoso
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.

The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Lengkap +
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Izzan Nufail Arvin
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.

The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Lengkap +
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library