Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Nurrimah
"Globalisasi membawa dampak besar bagi pertumbuhan ekonomi Indonesia. Sejak tahun 1961, secara umum pertumbuhan ekonomi Indonesia selalu mengalami kenaikan. Banyak faktor yang menyebabkan meningkatnya pertumbuhan ekonomi nasional. Salah satunya adalah investasi. Terdapat berbagai macam instrumen investasi. Sekarang ini yang paling banyak diminati oleh masyarakat umum adalah investasi saham. Bursa Efek Indonesia (BEI) mencatat bahwa per Juni 2018 banyaknya investor pasar modal mencapai 1,12 juta Single Investor Identification (SID) dengan 710.000 Single Investor Identification (SID) merupakan total investor saham ritel. Saham menjadi salah satu usaha dalam pemenuhan kebutuhan hidup di masa depan. Daya tarik utamanya adalah karena saham memberikan potensi keuntungan yang tinggi dalam jangka panjang. Namun, dengan potensi keuntungan yang tinggi tersebut, saham juga memiliki potensi kerugian yang tinggi. Salah satu usaha untuk meminimalkan potensi kerugian saham adalah dengan melakukan prediksi harga saham menggunakan machine learning. Harga saham akan diprediksi menggunakan metode penyelesaian masalah regresi, yaitu Fuzzy Support Vector Regression (FSVR). Fungsi pemetaan dalam fungsi keanggotaan fuzzy digunakan untuk menghasilkan fluktuasi harga saham yang tepat. Untuk memastikan keefektifan dan keefisienan penggunaan fitur, Fisher Score digunakan untuk memilih fitur yang paling berpengaruh dan informatif dalam model prediksi sehingga kesalahan hasil prediksi dapat diminimalkan. Fitur-fitur terpilih tersebut akan dijadikan sebagai variabel input dalam model prediksi. Evaluasi hasil prediksi dari data dengan dan tanpa dilakukan pemilihan fitur selanjutnya akan dianalisis menggunakan Normalized Mean Square Error (NMSE) dan dibandingkan sebagai bagian dari evaluasi performa model prediksi. Dari hasil prediksi pada salah satu data yang digunakan, tanpa pemilihan fitur, diperoleh model terbaik dengan nilai NMSE terendah sebesar 0,179 dan persentase data training 80%, sedangkan dengan pemilihan fitur Fisher Score, diperoleh model terbaik menggunakan sembilan fitur dengan nilai NMSE terendah sebesar 0,011 dan persentase data training 90%.
......Globalization has a big impact on Indonesias economic growth. Since 1961, in general Indonesias economic growth has always increased. Many factors have led to an increase in national economic growth. One of which is investment. There are many investment instruments. The most popular among the public is stock investment. Indonesia Stock Exchange (IDX) recorded as of June 2018 total of capital market investors reached 1,12 million Single Investor Identification (SID) with 710,000 Single Investor Identification (SID) representing total retail stock investors. Stock has become one of the activities to fulfill the needs of life in the future. Its main attraction is that stock provides high potential return of profit in long run. However, as high return of profit, stock also has high potential return of risks. One of the ways to minimize the potential return of risks is by predicting stock prices using machine learning. The stock prices will be predicted using a regression problem solving method, namely Fuzzy Support Vector Regression (FSVR). The mapping function in fuzzy membership function is used to produce the right stock price fluctuations. To ensure the effectiveness and the efficiency of using features, Fisher Score is used to select the most influential and informative features in the prediction model so that the prediction errors can be minimized. These selected features will be used as input variables in the stock price prediction model. The evaluation of the prediction results from the data with and without feature selection will be analyzed using Normalized Mean Square Error (NMSE) and compared as part of the performance evaluation of the prediction model. From the prediction results on one of data used, without doing feature selection, the best model is obtained with the lowest error is 0.179 and 80% training data, while with doing Fisher Score feature selection, the best model is obtained by using nine features with the lowest error is 0.011 and 90% training data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayu Andya Ruvita
"Pengenalan wajah merupakan teknologi yang berkembang sangat pesat. Pengenalan wajah mampu menghasilkan beragam informasi mengenai identitas seseorang dengan cepat dan akurat. Salah satunya, mampu memberikan informasi mengenai jenis kelamin dari setiap orang yaitu sebagai pria atau wanita. Proses klasifikasi pria atau wanita ini menjadi hal yang sangat penting dalam berbagai bidang, seperti bisnis berbasis online, kontrol akses, absensi kehadiran, sistem keamanan, identifikasi individu yang tidak dikenal, dan lain-lain. Dalam penelitian ini digunakan Fisher Score sebagai metode pemilihan fitur, dan Support Vector Machine SVM sebagai metode klasifikasi untuk mengukur tingkat akurasi dan running time dari klasifikasi pria atau wanita dengan data yang digunakan berasal dari Computer Science Research Projects. Hasil akurasi dari klasifikasi SVM kernel polynomial d = 4 dengan pemilihan fitur Fisher Score mencapai tingkat akurasi tertinggi yaitu 100 pada 3000 fitur dengan data training 90 . Sedangkan hasil akurasi terbaik dari klasifikasi SVM tanpa pemilihan fitur mencapai 77.5 pada data training 80.
......Face recognition is a technology that is growing very rapidly. Face recognition is able to produce various information about the identity of a person quickly and accurately. One of the utility of face recognition is the ability to provide information about the gender of each person as a male or female. The process of classifying male or female is of paramount importance in many areas, such as online based businesses, access control, attendance, security systems, identification of unknown individuals, and so on. In this study Fisher Score is used as a feature selection method, and Support Vector Machine SVM as a classification method to measure the accuracy and running time of male or female classification with data used from Computer Science Research Projects. Accuracy results from SVM polynomial kernel classification d 4 with Fisher Score feature selection reaches the highest accuracy level of 100 at 3000 features with 90 training data. While the best accuracy results from SVM classification without feature selection reached 77.5 in 80 training data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library