Ditemukan 2 dokumen yang sesuai dengan query
Rahadyan Prabowo
"Mutu beton yang diterapkan pada pengujian ini menggunakan target mutu K250 dan fc’ 20,7 MPa untuk beton beragregat polipropilena. Variasi tulangan pada balok beton tersebut terbagi menjadi A, B, C dan D. Balok jenis A merupakan beton polos, balok B beton dengan tulangan tarik, balok C menggunakan tulangan tarik dan sengkang U dan balok D menggunakan tulangan tekan, tarik dan sengkang lengkap. Jumlah sampel balok sebanyak 4 buah balok beton normal dan 4 buah balok beton ringan, sampel silinder sebanyak 3 silinder beton normal dan 3 silinder beton ringan. Material agregat kasar polipropilena dan agregat halus pasir Subang. Pengujian agregat yang dilakukan adalah analisis saringan agregat, specific gravity dan kadar organik. Mencari kuat tekan beton fc’ dengan uji tekan silinder dan menggunakan UPV. Metode uji lentur yang digunakan adalah lentur murni. Data yang akan diperoleh berupa besar lendutan (mm), besar beban luar (kg) dan pola retak. Kemudian, output yang dicari berupa pola retak balok beton, grafik kekakuan, blok tegangan beton dan grafik momen kurvatur. Dari hasil perbandingan antara balok beton normal dan ringan, diperoleh bahwa kekakuan balok beton ringan lebih besar dibandingkan balok beton normal, dan koefisien nilai k balok beton normal tidak dapat digunakan oleh beton ringan.
In this opportunity, the writer attempts to do a flexural test on different variation of reinforced concrete beams. This flexural test requires K250 concrete quality and fc’ 20 MPa for lightweight concrete. The variation of reinforced concrete beams are divided into 4 types, that is A, B, C and D. The A beam is a concrete beams without any steel reinforcements, B is a concrete beam using tensile steel reinforcement, C is a concrete beam using tensile steel reinforcement with an additional shear reinforments U shaped and D as a full reinforced concrete with compression and tensile steel reinforcements using full shear reinforcements. There are 8 samples of concrete beams that are used in this test. Four of them are concrete beams using dry mix concrete and the rest are lightweight concrete beams using polypropylene, and there are 3 samples of concrete cylinders using lightweight concrete and 3 samples using normal concrete. Polypropylene is used as coarse aggregate and Subang sand as fine aggregate. Aggregate tests include sieve analysis, specific gravity and organic impurities test. Cylinder concrete samples are tested using compressive test and non destructive test using UPV to find the value of fc’. The method that is used in this flexural test is pure bending. The output datas of this test are deflection (mm), external load (N) and crack pattern. The components that need to be find are crack pattern, force - displacement curve, stress distribution and curvature moment. The results from the comparation of both concretes indicates that lightweight concrete is more rigid than normal concrete, and the coefficients of stress distribution of normal concrete cannot be used to calculate lightweight concrete."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Md Azree Othuman Mydin
"Lime is among the binding agents used in binding masonry units, such as brick, in many historical buildings around the world. Its physical strength, mechanical strength, and durability properties, as well as its raw material composition, can play substantial roles in the structural behavior of historic buildings. The production technologies may also differ according to their specific use in the structural layout. Hence, the characteristics of lime mortars are of interest in the assessment of the structural characteristics of historic buildings. In addition, the determination of characteristics of lime mortars is also important for the production of intervention mortars to be used in the restoration of historic buildings. This research focused on the effects of egg white on lime mortar’s physical and mechanical properties. Five mixes were prepared by maintaining a constant lime–sand–water ratio of 1:2:0.035. As the binder material, the control mixture comprised only lime putty, while various percentages of egg white in the range of 2–10% were used to prepare the remaining mixtures. An experiment was then performed with different percentages of egg white to examine the lime mortar’s axial compressive and flexural strength, as well as the water absorption. The results indicated that the compressive and flexural strength of the lime mortar increased with the increasing percentage of egg white added into lime mortar until the mixture reached 6% egg white. The addition of 8% and 10% egg white made the compressive and flexural strength start to decrease. Lime mortar that contains 6% egg white had the highest compressive and flexural strength compared to the other mix design groups. The axial compressive strength and bending strength of lime mortar can also be influenced by the air pores."
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:5 (2017)
Artikel Jurnal Universitas Indonesia Library