Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Andi Darmawan
"Prsoses inversi dan forward modeling merupakan proses yang umum dilakukan dalam keilmuan geofisika khususnya pada metode magnetotelurik (MT) untuk memprediksi data dan parameter fisis material batuan di bawah permukaan bumi. Data dalam konteks ini merupakan resistivitas semu dan fase sementara parameter fisis merupakan resistivitas batuan. Proses tersebut biasanya dilakukan dengan menggunakan perangkat lunak tertentu yang perlu di unduh dan di install pada perangkat keras yang memenuhi spesifikasi, hal ini menjadi tidak fleksibel karena perangkat lunak perlu di install ulang jika ingin mengganti perangkat keras dan tidak semua perangkat keras dapat digunakan. Pada penelitian ini penulis mengembangkan platform website berbasis bahasa pemrograman python untuk melakukan proses forward modeling dan inversi data MT 1-D. Forward modeling dilakukan dengan menggunakan persamaan rekursif yang menyatakan hubungan antara impedansi dua lapisan sedangkan inversi dilakukan dengan menggunakan metode Levenberg-Marquardt. Pada inversi dengan stasiun lebih dari 1 maka kurva sounding hasil inversi akan dibentuk menjadi penampang resistivitas bawah permukaan dengan cara Krigging. Secara kuantitatif hasil inversi dengan website memiliki RMS error berkisar 0.08-0.21 % untuk data sintetik dan 0.84-1.84 % untuk data lapangan, secara kualitatif kurva inversi website memiliki trend yang mirip dengan software konvensional sehingga inversi website dinilai cukup valid. Dengan dikembangkannya platform web ini proses inversi dan forward modeling data MT 1-D dapat dilakukan di mana saja melalui perangkat apapun selama terdapat koneksi internet dan browser. Namun karena terdapat perbedan antara penampang hasil inversi website dengan software konvensional yang menyebabkan detil struktur tidak terlihat, maka website ini lebih cocok untuk digunakan pada keperluan akademis untuk melihat pola resistivitas bawah permukan secara umum dan bukan secara detail.

Invers and forward modeling is a common process or technique done in the field of geophysics, particularly on magnetotelluric method (MT) in order to predict data and physical parameters of rock materials underneath the surface. Data in this context is apparent resistivity and phase, while physical parameters is the conductivity of the rock materials. This process usually conducted using a certain software that has to be installed on a hardware that meets the minimum requirement, this is not flexible in modern age because the software would need to be re-installed if we wish to use other device, moreover not all device is compatible. In this research, writer is developing a web platform based on python programming language for the purpose of forward and invers modeling of 1-D MT data. The forward modeling algorithm is done by utilizing the recursive equation which states the relationship between impedance of two sequential layers while inverse modeling is done using Levenberg-Marquardt method. In a case where the inverted data has more than 1 station, the sounding curve as the output of the inversion will be made into a resistivity crossection using Krigging. Quantitatively the inversion result using this website has an RMS error of 0.08 - 0.21 % for syntethic data and 0.84 – 1.84 % for real data, qualitatively the inversion curve resulting from this website has similar trend to an inversion curve done by a conventional software, thus the inversion using this website is valid. With the development of this web platform the inverse and forward modeling process of 1-D MT data can be conducted anywhere through all kinds of device as long as internet conection and browser is available. However due to the difference between cross section resulting from inversion using website and using conventional software that has lead to certain structure can not be seen, therefore this website is more suitable to be used in an academic purposes to see subsurface resistivity pattern in general and not in detail."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dicki Hendrian
"[Usaha untuk mendapatkan data seismik yang baik serta interpretasi seismik dari data eksisting pada suatu lapangan yang mempunyai struktur kompleks relatif sukar untuk dilakukan. Pembuatan model ideal untuk parameter seismik dengan menggunakan Forward Modelling diharapkan mampu untuk membuat hubungan antara kompleksitas struktur dengan data seismik yang dihasilkan.
Hasil dari pembuatan Forward Modelling yang dilakukan dibandingkan dengan data real menunjukkan bahwa response seismik pada zone prospek menunjukkan trend yang sama, dimana pada zona yang mengalami struktur geologi yang kompleks, response seismik kurang bagus. Hasil pengurangan trace data real versus synthetic pada lintasan UT88-520 dan UT88-535 masih menunjukkan residu yang cukup besar, sebagai akibat dari kompleksitas struktur
geologi lapangan Tiaka. Hasil Forward Modelling dapat dijadikan sebagai pembanding dan validasi hasil seismik yang diharapkan untuk mendapatkan model seismik yang dapat menjadi acuan pada saat akuisisi seismik, agar didapatkan data seismik yang lebih baik.

The effort to get good seismic data from very complex geological structure is very difficult; such as the case for interpreting the existing data. Ideal modeling for seismic survey using Forward Modeling hopefully can explain the correlativity between geological structural complexities and the seismic result that we get. The main result of this study show us that comparison between Forward Modeling against Real Data indicate that the trend of seismic response in prospect zone/target zone almost similar, while the seismic response in fracture zone is not clear. Subtractions results between real data against synthetic in line UT88-520 and UT88-535 still give significant remain, indicate that structural geology in Tiaka Field is very complex. The Modeling result can be use as the ideal result and can be use as validation/comparable result to get the certain model and can become reference for seismic acquisition.;The effort to get good seismic data from very complex geological structure
is very difficult; such as the case for interpreting the existing data. Ideal modeling
for seismic survey using Forward Modeling hopefully can explain the
correlativity between geological structural complexities and the seismic result that
we get.
The main result of this study show us that comparison between Forward
Modeling against Real Data indicate that the trend of seismic response in prospect
zone/target zone almost similar, while the seismic response in fracture zone is not
clear. Subtractions results between real data against synthetic in line UT88-520
and UT88-535 still give significant remain, indicate that structural geology in
Tiaka Field is very complex.
The Modeling result can be use as the ideal result and can be use as
validation/comparable result to get the certain model and can become reference
for seismic acquisition.;The effort to get good seismic data from very complex geological structure
is very difficult; such as the case for interpreting the existing data. Ideal modeling
for seismic survey using Forward Modeling hopefully can explain the
correlativity between geological structural complexities and the seismic result that
we get.
The main result of this study show us that comparison between Forward
Modeling against Real Data indicate that the trend of seismic response in prospect
zone/target zone almost similar, while the seismic response in fracture zone is not
clear. Subtractions results between real data against synthetic in line UT88-520
and UT88-535 still give significant remain, indicate that structural geology in
Tiaka Field is very complex.
The Modeling result can be use as the ideal result and can be use as
validation/comparable result to get the certain model and can become reference
for seismic acquisition., The effort to get good seismic data from very complex geological structure
is very difficult; such as the case for interpreting the existing data. Ideal modeling
for seismic survey using Forward Modeling hopefully can explain the
correlativity between geological structural complexities and the seismic result that
we get.
The main result of this study show us that comparison between Forward
Modeling against Real Data indicate that the trend of seismic response in prospect
zone/target zone almost similar, while the seismic response in fracture zone is not
clear. Subtractions results between real data against synthetic in line UT88-520
and UT88-535 still give significant remain, indicate that structural geology in
Tiaka Field is very complex.
The Modeling result can be use as the ideal result and can be use as
validation/comparable result to get the certain model and can become reference
for seismic acquisition.]
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T43250
UI - Tesis Membership  Universitas Indonesia Library
cover
Dicki Hendrian
"[Usaha untuk mendapatkan data seismik yang baik serta interpretasi seismik dari data eksisting pada suatu lapangan yang mempunyai struktur kompleks relatif sukar untuk dilakukan. Pembuatan model ideal untuk parameter seismik dengan menggunakan Forward Modelling diharapkan mampu untuk membuat hubungan antara kompleksitas struktur dengan data seismik yang dihasilkan.
Hasil dari pembuatan Forward Modelling yang dilakukan dibandingkan dengan data real menunjukkan bahwa response seismik pada zone prospek menunjukkan trend yang sama, dimana pada zona yang mengalami struktur geologis yang kompleks, response seismik kurang bagus. Hasil pengurangan trace data real versus synthetic pada lintasan UT88-520 dan UT88-535 masih menunjukkan residu yang cukup besar, sebagai akibat dari kompleksitas struktur
geologi lapangan Tiaka. Hasil Forward Modelling dapat dijadikan sebagai pembanding dan validasi hasil seismik yang diharapkan untuk mendapatkan model seismik yang dapat menjadi acuan pada saat akuisisi seismik, agar didapatkan data seismik yang lebih baik.

The effort to get good seismic data from very complex geological structure is very difficult; such as the case for interpreting the existing data. Ideal modeling for seismic survey using Forward Modeling hopefully can explain the correlativity between geological structural complexities and the seismic result that we get. The main result of this study show us that comparison between Forward Modeling against Real Data indicate that the trend of seismic response in prospect zone/target zone almost similar, while the seismic response in fracture zone is not clear. Subtractions results between real data against synthetic in line UT88-520 and UT88-535 still give significant remain, indicate that structural geology in Tiaka Field is very complex. The Modeling result can be use as the ideal result and can be use as validation/comparable result to get the certain model and can become reference for seismic acquisition.;The effort to get good seismic data from very complex geological structure is very difficult; such as the case for interpreting the existing data. Ideal modeling for seismic survey using Forward Modeling hopefully can explain the correlativity between geological structural complexities and the seismic result that we get. The main result of this study show us that comparison between Forward Modeling against Real Data indicate that the trend of seismic response in prospect zone/target zone almost similar, while the seismic response in fracture zone is not clear. Subtractions results between real data against synthetic in line UT88-520 and UT88-535 still give significant remain, indicate that structural geology in Tiaka Field is very complex. The Modeling result can be use as the ideal result and can be use as validation/comparable result to get the certain model and can become reference for seismic acquisition.;The effort to get good seismic data from very complex geological structure
is very difficult; such as the case for interpreting the existing data. Ideal modeling
for seismic survey using Forward Modeling hopefully can explain the
correlativity between geological structural complexities and the seismic result that
we get.
The main result of this study show us that comparison between Forward
Modeling against Real Data indicate that the trend of seismic response in prospect
zone/target zone almost similar, while the seismic response in fracture zone is not
clear. Subtractions results between real data against synthetic in line UT88-520
and UT88-535 still give significant remain, indicate that structural geology in
Tiaka Field is very complex.
The Modeling result can be use as the ideal result and can be use as
validation/comparable result to get the certain model and can become reference
for seismic acquisition., The effort to get good seismic data from very complex geological structure
is very difficult; such as the case for interpreting the existing data. Ideal modeling
for seismic survey using Forward Modeling hopefully can explain the
correlativity between geological structural complexities and the seismic result that
we get.
The main result of this study show us that comparison between Forward
Modeling against Real Data indicate that the trend of seismic response in prospect
zone/target zone almost similar, while the seismic response in fracture zone is not
clear. Subtractions results between real data against synthetic in line UT88-520
and UT88-535 still give significant remain, indicate that structural geology in
Tiaka Field is very complex.
The Modeling result can be use as the ideal result and can be use as
validation/comparable result to get the certain model and can become reference
for seismic acquisition.]
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Emir Ghufron
"Analisis Splitting Curve Data Magnetotellurik untuk Mengidentifikasi Zona Permeabel Pada Lapangan Geothermal XEmir Ghufron1, Syamsu Rosyid11Departemen Fisika, FMIPA, Universitas IndonesiaEmail : ghufronemir@gmail.com Abstrak Dalam eksplorasi geothermal, zona permeabel merupakan salah satu parameter yang diperhitungkan. Zona permeabel tersebut dipengaruhi oleh rekahan atau patahan yang terbentuk di bawah permukaan daerah prospek geothermal. Dengan melihat kondisi geologi daerah prospek, zona permeabel dapat diidentifikasi. Pada kenyataanya, metode geologi yang digunakan hanya mampu mengetahui kondisi struktur di permukaan bumi. Mengetahui kondisi geologi yang ada di bawah permukaan bumi sangat sulit di perhitungkan.
Berdasarkan hal tersebut dilakukan analisis Splitting Curve data MT untuk mengetahui kondisi geologi di bawah permukaan. Penelitian ini dibantu dengan membuat forward modeling data sintetik untuk memperkuat analisis Splitting Curve dan kemudian diimplemetasikan pada data rill MT.
Hasil dari forward modeling menunjukan adanya perbedaan nilai resistivitas yang menghasilkan percabangan kurva TE dan TM, hal ini memberi informasi dekat atau jauhnya suatu stasiun pengukuran MT terhadap batas kontras resistivitas atau batas suatu struktur. Hasil akhir dari penelitian ini adalah penentuan zona permeabel daerah prosek geothermal, harapanya dapat mengetahui infornasi struktur geologi bawah permukaan.

Permeability zone is one of the most important parameter. The permeability zone is affected by fracture or fault that occurs in the subsurface of geothermal prospect area. By studying on the geological condition, we can identify the permeable zone. The fact is, the geological method is limited to the structure on the surface only. To learn more about geological condition in subsurface is very difficult.
Splitting curve analysis of MT data to learn about the continuity of subsurface geological condition. This research is assisted by making forward modelling of synthetic MT data to strengthen spliting curve analysis and then implementing it into the real MT data.
The result from forward modelling showed the difference of resistivity value which produce shifting in TE and TM curve. Thus, this information is letting us know the distance between MT station to resistivity contrast boundary or limit of the structure. The final result for this reasearch is to determine the permeable zone at the subsurface, hopefully the geological structures from subsurface of geothermal prospect area can be determined.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69110
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tri Widjaya Putranto
"ABSTRAK
Eksplorasi merupakan sebuah tahapan yang memiliki resiko tinggi di suatu proyek panas bumi. Salah satu target eksplorasi adalah zona permeabilitas tinggi. Zona permeabilitas tinggi berasosiasi dengan struktur bawah permukaan, seperti struktur patahan di daerah sistem panas bumi. Metode magnetotellurik MT dan gravitasi dapat digunakan untuk mendelineasi keberadaan sebuah struktur. Forward modeling 3D dilakukan untuk mendapatkan karakteristik dari diagram polar, induction arrow, FHD First Horizontal Derivative dan SVD Second Vertical Derivative dari berbagai variasi model sintetik struktur patahan yang selanjutnya diimplementasikan ke data MT riil dan data gravitasi riil. Diagram polar akan sejajar struktur ketika di zona yang lebih konduktif dan akan tegak lurus ketika di zona yang lebih resistif, sudut kemiringan berpengaruh terhadap pemipihan diagram polar. Induction arrow akan menunjukan zona konduktif. Respon dari model sintetik MT tidak bisa membedakan jenis patahan. FHD dipengaruhi kemiringan patahan tetapi tidak dipengaruhi jenis patahan. SVD dipengaruhi kemiringan dan jenis patahan. Hasil dari pengolahan data riil diketahui bahwa struktur patahan didominasi arah Utara-Selatan. Teridentifikasi terdapat 3 patahan dari analisis derivatif gravitasi.

ABSTRACT
Exploration is a high risk stage in geothermal project. One of the geothermal exploration target is a zone of high permeability. The high permeability zones are associated with subsurface structure, like fault structure on geothermal system area. Magnetotelluric MT and gravity methods can be utilized to delineate the existence of fault structure. In this research we made forward modeling for synthetic model MT data and gravity data. 3D forward modeling is carried out to have knowledge about characteristics of polar diagram, induction arrow, FHD First Horizontal Derivative , and SVD Second Vertical Derivative of various synthetic model fault structure to be implemented on real MT and Gravity Data. Polar diagram will be parallel to the strike when in the conductive zone and will be perpendicular to the strike when in the resistive zone, the smaller angle of strike slope form of the polar diagram will be more flattened. Induction arrow could show where the conductive zone. Synthetic model MT responses can not provide information on the type of structure. FHD is influenced by dip the fault but not influenced by the type of fault. SVD is influenced by dip and the type of fault. The results obtained from the real MT and gravity data known that fault structure dominated direction in N S. There are There are 3 fault identified by FHD and SVD methods."
2017
S67040
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elsya Ribka Krisen
"Pengolahan dan analisa data gravitasi pada cekungan Sumatra Tengah diperlukan guna mengidentifikasi dan mendeliniasi keberadaan sub-cekungan yang berpotensi sebagai peng-supply hidrokarbon dan mengetahui struktur geologi bawah permukaan dengan pemodelan 2D. Analisa spektrum, analisis derivatif, serta pemodelan forward 2D dilakukan dalam pengolahan data dan disesuaikan dengan data pendukung untuk mengetahui keberadaan sub-cekungan dan struktur bawah permukaan area penelitian. Berdasarkan penerapan metode tersebut didapatkan nilai anomali bouguer berkisar dari -24.924 mGal hingga 20.119 mGal, dengan anomali tinggi pada bagian barat laut-selatan yang berhubungan dengan basemen yang terangkat di area tersebut dan anomali rendah tersebar pada arah barat daya, barat laut, timur laut, dan tenggara berhubungan dengan zona sesar. Hasil analisa spektrum menunjukkan kedalaman basemen berada pada kedalaman 3.2-7.05 kilometer, kedalaman rata-rata anomali residual berkisar 0.5-3 km. Hasil analisa derivatif yang terkonfirmasi oleh data geologi terdapat struktur sesar naik berupa sub-thrust yang berasosiasi dengan high anomali dan juga terdapat sesar normal yang berhubungan dengan low anomali. Hasil model forward 2D menggambarkan struktur lapisan penyusun berumur tua sampai muda mulai dari basemen, kelompok pematang, kelompok sihapas, formasi telisa, formasi petani, formasi minas, dan endapan alluvial. Sub-cekungan teridentifikasi memiliki estimasi kedalaman antara 3.2-3.8 km dengan batas sub-cekungan terletak pada indikasi sesar daerah penelitian.

Processing and analysis of gravity data in Central Sumatra Basin are needed to identify and delineate the existence of sub-basins that have the potential to supply hydrocarbons and determine the subsurface geological structure with 2D modeling. Spektrum analysis, FHD analysis, and 2D forward modeling are carried out in data processing and adjusted with supporting data to determine the existence of sub-basins and subsurface structures in the study area. Based on the application of this method, the result shows that Bouguer anomaly values ranged from -24.924 mGal to 20.119 mGal with high anomalies in the northwest-south associated with raised basement in the area and low anomaly spread in the southwest, northwest, northeast, and southeast associated with fault zones. The spectrum analysis result shows that the depth of the basement is at a depth of 3.2-7.05 km, and the average depth of the residual anomaly is around 0.5-3 km. The result of the derivative analysis which are confirmed by the geological data show that there is an reverse fault structure in the form of a sub-thrust which is associated with high anomalies and there are also normal faults which are associated with low anomaly. The result of the 2D forward model describe the layer structure from the eldest to youngest that were Basement, Pematang groups, Sihapas groups, Telisa formations, Petani formations, Minas formations, and alluvial deposits. The identified sub-basin has an estimated depth of between 3.2-3.8 km with the boundary of the sub-basin located at the fault indication in the study area.  "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwintha Zahrianthy
"Dalam akuisisi metode gravitasi penentuan lebar grid merupakan hal yang penting, karena lebar grid ini akan menentukan jangkauan kedalaman benda anomali yang dapat tercapai dan mempengaruhi resolusinya. Jika grid yang digunakan terlalu kecil maka kedalaman penetrasinya tidak akan mencapai target, dan sebaliknya jika grid terlalu besar. Hal ini dikarenakan penetrasinya berhubungan dengan superposisi medan gravitasi dari masing-masing grid tersebut. Spektrum analisis dapat digunakan untuk mengestimasi kedalaman anomali dari suatu data gravitasi. Untuk itu dilakukan simulasi dengan menggunakan data anomali Bouguer sintetik untuk menentukan besar grid yang sebaiknya digunakan (best gridd) dalam akuisisi gravitasi sehingga kedalaman yang dicapai sesuai dengan dengan target anomali yang diinginkan (best grid). Dari hasil analisa spektrum didapatkan bahwa grid yang paling optimal adalah 9% dari target kedalaman yang diinginkan. Kemudian data anomali Bouguer ini diseparasi dengan Polynomial Trend Surface Analysis untuk memisahkan anomali regional dan lokal. Pada grid-to-depth-ratio 9% yang dihasilkan dari spektrum analisis, ditentukan bahwa best order yang direkomendasikan untuk memisahkan anomali regional dan lokalnya adalah orde 2. Jika grid yang digunakan lebih besar, maka kedalamam medan gravitasi yang terukur akan lebih dalam, sehingga orde polinomialnya juga semakin naik, dan sebaliknya. Aturan dalam penentuan hubungan grid, kedalaman dan orde ini akan sangat membantu dalam membuat suatu design akuisisi dan processing dalam survey metode gravitasi.

Gridding is one of important things in the acquisition of gravity method due to its ability in determining the possible depth of anomaly objects and its effect in resolution. The depth of penetration will not be able to reach the target if the gridding range is too small, and vice versa. Because the penetration associated with superposition of gravitational field the grid respectively. Spectrum analysis can be used to estimate the depth of anomaly of such gravity data. As such, the simulation using anomaly Bouguer synthetic data is needed to determine the grid that should be applied in the acquisition (known as best grid), thus the target of depth anomaly can be reached. Results of spectral analysis showed that the most optimum gridd is 9% of the target depth. After that, this Bouguer anomaly is processed by using Polynomial Trend Surface Analysis (Polynomial TSA) to distinguish the regional and local anomaly. On the grid-to-depth-ratio 9% which had been determined by spectrum analysis, the best order which recommended to distinguish the regional and local anomaly is order 2nd. If the grid is used larger then the depth of measured gravitational field will be deeper, thus the order of polynomial will be increased too, and vice versa. This methodology in determining the correlation between gridding and depth will help peoples in designing the better acquisition of gravity survey and its processing."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S46673
UI - Skripsi Membership  Universitas Indonesia Library
cover
Friska Agustina
"Sistem geotermal merupakan sistem yang dinamis, terutama ketika mulai dilakukan produksi, keadaan sistem geotermal akan mengalami ketidakseimbangan. Dengan dilakukannya produksi, tekanan pada reservoir akan menurun dan mengakibatkan boiling, sehingga fase cair berubah menjadi fase uap. Dengan permeabilitas vertikal yang baik, fase uap akan bergerak ke bagian atas reservoir dan terpisah dengan fase cair, lalu terbentuklah steam cap di zona atas dan reservoir dengan fase cair pada bagian bawah. Walaupun uap yang paling mudah digunakan dalam pemanfaatan eksplorasi geotermal, namun proses pembentukan uap lebih lambat jika dibandingkan dengan pengambilan uap dari reservoir, sehingga membuat proses eksplorasi menjadi tidak sustainable. Oleh karena itu, perlu dilakukan pengelolaan reservoir yang baik dengan melakukan monitoring dan proses produksi-reinjeksi yang baik. Pada penelitian ini, digunakan metode 3-D forward modeling dengan melakukan simulasi perubahan karakteristik reservoir dengan mengasumsikan penambahan volume steam cap. Lalu dalam proses analisisnya dilakukan inversi 1-D dan 2-D juga membuat kurva resistivitas untuk setiap model sintetik yang telah dibuat. Dari hasil kurva resistivitas, telihat jika adanya kenaikan kurva atau kenaikan nilai resistivitas yang bertahap pada bagian kedalaman antara clay cap dan reservoir. Begitupun dari hasil inversi, terlihat anomali dengan resistivitas tinggi pada bagian antara clay cap dan reservoir. Perubahan nilai resistivitas itu sendiri menunjukkan bagaimana pengaruh keberadaan steam cap pada respon resistivitas.

The geothermal system is a dynamic system, especially when production starts, the state of the geothermal system will experience an imbalance. With production, the pressure in the reservoir will decrease and result in boiling, so that the liquid phase changes to the vapor phase. With good vertical permeability, the vapor phase will move to the top of the reservoir and separate from the liquid phase, then a steam cap is formed in the upper zone and a reservoir with a liquid phase at the bottom. Although steam is the easiest to use in the utilization of geothermal exploration, the process of forming steam is slower than the extraction of steam from a reservoir, thus making the exploration process unsustainable. Therefore, it is necessary to carry out a good reservoir management by monitoring and a good production-reinjection process. In this study, the 3-D forward modeling method was used by simulating reservoir changes by assuming an additional steam cap volume.Then, in the analysis process, 1-D and 2-D inversions are also carried out to create a resistivity curve for each forward model that has been made. From the results of the resistivity curve, it can be seen if there is a gradual increase in the resistivity value at the depth between the clay cap and the reservoir. Likewise, from the inversion results, anomaly with high resistivity was seen in the part between the clay cap and the reservoir. The change in the resistivity value itself shows how the presence of a steam cap affects the resistivity response.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hutahaean, Benita Aryani
"Pusuk Buhit adalah salah satu lapangan di Indonesia dengan potensi geotermal, dibuktikan oleh keberadaan fumarole, hot spring, dan cold spring. Penelitian bertujuan membangun model konseptual yang menggambarkan komponen-komponen sistem geotermal fokus wilayah penelitian yang belum ada sebelumnya, menggunakan data primer geofisika dan data sekunder geologi dan geokimia. Inversi 3-dimensi magnetotellurik mampu menggambarkan komponen sistem geotermal dari variasi resistivitas. Claycap memiliki resistivitas 0-16 Ωm, reservoir 16-80 Ωm, dan basement 80-300 Ωm, dengan pola updoming di antara basement diduga sebagai sumber panas. Model gravitasi 2-dimensi digunakan untuk mengkonfirmasi jalur fluida ke zona reservoir dan nilai densitas dari komponen sistem geotermal, dengan lapisan piroklastik densitas 1.92 gr/cc, batuan gamping 2.3-2.4 gr/cc, dan batuan dasar metamorf 2.7 gr/cc, yang menunjukkan korelasi dengan model magnetotellurik. Kedua metode didukung data geologi yang menunjukkan korelasi antara struktur dengan manifestasi permukaan, serta data geokimia yang menunjukkan fluida reservoir bertipe bikarbonat, suhu di reservoir 240-270°C, dan pergerakan fluida lateral ke arah manifestasi air, serta upflow menuju fumarole. Integrasi data menunjukkan area prospek geotermal berada di bawah lapisan batuan teralterasi konduktif di antara struktur graben wilayah penelitian.

Pusuk Buhit is one of the fields in Indonesia with geothermal potential, evidenced by the presence of fumaroles, hot springs, and cold springs. The research aims to build a conceptual model depicting the components of the geothermal system in the focus area, which has not been previously studied, using primary geophysical data and secondary geological and geochemical data. The 3-dimensional magnetotelluric inversion can illustrate the geothermal system components based on resistivity variations. The clay cap has a resistivity of 0-16 Ωm, the reservoir 16-80 Ωm, and the basement 80-300 Ωm, with an updoming pattern within the basement suspected to be the heat source. A 2- dimensional gravity model is used to confirm fluid pathways to the reservoir zone and the density values of the geothermal system components, with pyroclastic layers having a density of 1.92 gr/cc, limestone 2.3-2.4 gr/cc, and metamorphic basement rocks 2.7 gr/cc, which show correlation with the magnetotelluric model. Both methods are supported by geological data showing a correlation between structures and surface manifestations, as well as geochemical data indicating bicarbonate-type reservoir fluids, reservoir temperatures of 240-270°C, lateral fluid movement towards water manifestations, and upflow towards fumaroles. Data integration indicates that the geothermal prospect area is located beneath the conductive altered rock layer within the graben structures of the study area.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library