Ditemukan 4 dokumen yang sesuai dengan query
Naiza Astri Wulandari
Abstrak :
Sistem Penilaian Esai Otomatis (Simple-O) telah dibuat menggunakan algoritma K-Means dan metode Latent Semantic Analysis (LSA). Jawaban karangan siswa pertama-tama akan diklasifikasikan ke dalam kelas-kelas sesuai dengan topik masing-masing nomor, dan akan memisahkannya dari jawaban siswa yang tidak sesuai konteks kemudian akan dilakukan proses LSA yang merepresentasikan kata ke dalam matriks, yang kemudian matriks direduksi menggunakan Singular Value Decomposition dan dilanjutkan dengan mencari norma frobenius yang merupakan nilai dari setiap soal. Pada penelitian ini dilakukan uji coba dengan menggunakan 4 skenario dan hasil penelitian SIMPLE-O menggunakan algoritma K-Means dan LSA menghasilkan akurasi rata-rata sebesar 74% yaitu hasil skenario pengujian 1
......An Automatic Essay Assessment System (Simple-O) has been created using the K-Means algorithm and the Latent Semantic Analysis (LSA) method. Students' essay answers will first be classified into classes according to the topic of each number, and will separate them from student answers that do not fit the context then an LSA process will be carried out which represents the word into a matrix, which is then reduced by using Singular Value. Decomposition and continue by looking for the Frobenius norm which is the value of each question. In this study, trials were carried out using 4 scenarios and the results of the SIMPLE-O research using the K-Means and LSA algorithms produced an average accuracy of 74%, namely the results of the test scenario number 1.
Depok: FAkultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Weldaline Zafira Winarto
Abstrak :
ABSTRAK
Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia telah mengembangkan sistem penilaian esai otomatis (SIMPLE-O) untuk ujian bahasa Jepang. Skripsi kali ini akan membahas pengembangan SIMPLE-O dalam
mengoreksi ujian bahasa Jepang dengan menggunakan metode N-Gram dan Latent Semantic Analysis (LSA) dan bahasa pemrograman Python dengan tujuan untuk mencapai nilai akurasi yang maksimal. N-Gram digunakan untuk mengoreksi pola kalimat data yang diuji dengan referensi, serta LSA dan Frobenius Norm untuk pemrosesan teks dan pemeriksaan kesamaan teks. Dari pengujian yang telah dilakukan, SIMPLE-O dengan N-Gram dapat mencapai rata-rata akurasi sebesar88,09%.
ABSTRACT
Department of Electrical Engineering, Faculty of Engineering, University of Indonesia has developed a system to grade Japanese examination essay automatically. This thesis will discuss about the development of SIMPLE-O in grading Japanese examination essays using N-Gram and Latent Semantic Analysis (LSA) using Python programming languageto reach the maximum accuracy level. N-Gram is used to score the answer based on the words and the pattern of the sentence of key answer. LSA and Frobenius Norm are used toprocess the text and to check the similarity of both text. From the test that has been done, SIMPLE-O using N-GramandLSAis able to obtain an average rate of accuracy of 88,09%.
2019
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Budi Selamet Raharjo
Abstrak :
Sistem Penilaian Otomatis SIMPLE-O selama ini dikembangkan dengan pemrograman PHP di Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia. Namun akurasi SIMPLE-O saat ini belum cukup tinggi untuk dapat digunakan secara praktis. SIMPLE-O kemudian dilanjutkan pengembangannya menggunakan pemrograman Bahasa C, tidak hanya untuk mencoba meningkatkan akurasi SIMPLE-O, tapi juga untuk memperluas penggunaannya. Untuk dapat meningkatkan akurasi penilaian SIMPLE-O diintegrasikan learning vector quantization LVQ pada pengembangannya. Skripsi ini membahas bagaimana pengembangan SIMPLE-O dengan LVQ menggunakan pemrograman Bahasa C.Seberapa banyak bagian data sampel yang digunakan pada saat training mempengaruhi performa penilaian. Semakin sedikit data yang digunakan pada fase training, maka akan terjadi penurunan akurasi pada fase evaluasi. Akurasi penilaian juga dipengaruhi proses ekstraksi ciri-ciri teks yang dilakukan menggunakan latent semantic analysis LSA dan singular value decomposition SVD . Akurasi penilaian dapat berubah ketika singular value yang dihasilkan, di proses terlebih dulu dengan frobenius norm dan vector angle. Faktor lainnya seperti jumlah kata-per-kolom matriks LSA tidak begitu mempengaruhi akurasi penilaian. Pada akhir percobaan, akurasi SIMPLE-O dengan LVQ secara rata-rata adalah 52.27 . Dengan menambahkan LVQ, akurasi SIMPLE-O mengalami peningkatan sebesar 41.67.
......Sistem Penilaian Otomatis SIMPLE O was developed using PHP at Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia. But the resulting accuracy of the SIMPLE O was not reliable enough to be used practically. Right now, SIMPLE O was being developed using C Programming Language. This was done to increase its reliability and to further widen its applications. To increase the accuracy of SIMPLE O, learning vector quantization LVQ was integrated as part of the new program. This Paper was written to address the development of SIMPLE O with LVQ.With less data used in LVQ training phase there will a decrease in the resulting accuracy of the validation phase. The accuracy was also affected by the method of how well the extraction of the text characteristic using latent semantic analysis LSA and singular value decomposition SVD . Additional process of the resulting singular value will result in change of accuracy. The number of words per column when creating the LSA matrix did not have any significant effect. At the end, SIMPLE O with LVQ has an average accuracy of 52.27. Implementation of LVQ give an increase of 41.67 of the accuracy.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68766
UI - Skripsi Membership Universitas Indonesia Library
Adisa Larasati
Abstrak :
ABSTRAK
Pada awalnya, Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia telah mengembangkan sebuah sistem penilaian esai otomatis SIMPLE-O untuk ujian esai dalam bahasa Indonesia, namun kali ini dikembangkan untuk ujian esai dalam bahasa Jepang. Skripsi ini akan membahas mengenai penerapan dan pengembangan SIMPLE-O untuk ujian bahasa Jepang berbasis algoritma latent semantic analysis LSA dalam bahasa pemrograman Python. Pengujian menggunakan pendekatan text-similarity frobenius norm. Jenis input teks untuk proses LSA berpengaruh terhadap tingkat akurasi sistem, begitu pula dengan jenis nilai yang dimasukkan ke dalam matriks term-document matrix TDM . Dari hasil pengujian dan analisis yang telah dilakukan, apabila menggunakan input teks dan jenis nilai yang dimasukkan ke dalam matriks TDM yang tepat, LSA mampu menghasilkan akurasi sebesar 99.93.
ABSTRACT
In the beginning, Department of Electrical Engineering in Universitas Indonesia has developed an automated essay scoring system SIMPLE O for essay tests in Indonesian, but this time it is developed for essay tests in Japanese. This thesis will discuss about the development and implementation of SIMPLE O for essay tests in Japanese based on latent semantic analysis LSA Algorithm written in Python programming language. The text similarity approach used in this thesis is frobenius norm to measure similarity between texts. The type of text input for the LSA process influences the rate of accuracy of the system, the type of value inserted into the term document matrix TDM can also influence the rate of accuracy of the sysstem. From the result of test and analysis that has been done, given the appropriate type of text input and type of value inserted into the TDM, LSA is able to obtain a rate of accuracy of 99.93
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library